हिंदी

Find a Matrix X Such that 2a + B + X = O, Where If A = `[[8 0],[4 -2],[3 6]]` And B = `[[2 -2],[4 2],[-5 1]]` , Then Find the Matrix X Of Order 3 × 2 Such that 2a + 3x = 5b. - Mathematics

Advertisements
Advertisements

प्रश्न

Find a matrix X such that 2A + B + X = O, where 

 If A = `[[8            0],[4    -2],[3         6]]` and B = `[[2       -2],[4           2],[-5          1]]`

, then find the matrix X of order 3 × 2 such that 2A + 3X = 5B.

 
योग

उत्तर

2A+3X=5B 

`⇒ 2[[8       0],[4    -2],[3        6]]+3x =5[[2          -2],[4                  2],[-5                1]]`

`⇒[[16     0],[8     -4],[6          12]]+3x =[[10      -10],[20        10],[-25            5]]`

`⇒ 3x =[[10        -10],[20            10],[-25            5]]-[[16         0],[8      -4],[6           12]]`

`⇒ 3x = [[10 - 16        -10-0],[20-8                10+4],[-25 - 6            5-12]]`

`⇒ 3x= [[-6       -10],[12                14],[-31         -7]]`

`⇒= 1/3 [[-6      -10],[12           14],[-31          -7]]`

`∴⇒x = [[-2        (-10)/3],[12                  14/3],[(-31)/3    (-7)/3]]`

shaalaa.com
  क्या इस प्रश्न या उत्तर में कोई त्रुटि है?
अध्याय 5: Algebra of Matrices - Exercise 5.2 [पृष्ठ १९]

APPEARS IN

आरडी शर्मा Mathematics [English] Class 12
अध्याय 5 Algebra of Matrices
Exercise 5.2 | Q 18.2 | पृष्ठ १९

वीडियो ट्यूटोरियलVIEW ALL [1]

संबंधित प्रश्न

if  `A=[[2,0,0],[0,2,0],[0,0,2]]` then A6=  ......................


Solve the following matrix equation for x: `[x 1] [[1,0],[−2,0]]=0`


If `A=[[1,2,2],[2,1,2],[2,2,1]]` ,then show that `A^2-4A-5I=0` and hence find A-1.


If `A=([2,0,1],[2,1,3],[1,-1,0])` find A2 - 5A + 4I and hence find a matrix X such that  A2 - 5A + 4I + X = 0


Let `A = [(2,4),(3,2)] , B = [(1,3),(-2,5)], C = [(-2,5),(3,4)]`

Find  A + B


Compute the following:

`[(a,b),(-b, a)] + [(a,b),(b,a)]`


Compute the following:

`[(cos^2x, sin^2 x),(sin^2 x ,cos^2 x)]+[(sin^2 x, cos^2 x), (cos^2 x, sin^2 x)]`


If F(x) = `[(cosx, -sinx,0), (sinx, cosx, 0),(0,0,1)]`  show that F(x)F(y) = F(x + y)


Compute the following sums:

`[[3   -2],[1           4]]+ [[-2         4 ],[1           3]]`


Let A = `[[2,4],[3,2]]`, `B=[[1,3],[-2,5]]`and `c =[[-2,5],[3,4]]`.Find each of the following: 2A − 3B


Let A = `[[2,4],[3,2]]`, `B=[[1,3],[-2,5]]`and `c =[[-2,5],[3,4]]`.Find each of the following:  B − 4C


Let A = `[[2,4],[3,2]]`, `B=[[1,3],[-2,5]]`and `c =[[-2,5],[3,4]]`.Find each of the following: 3A − 2B + 3C


If A = diag (2 − 59), B = diag (11 − 4) and C = diag (−6 3 4), find

B + C − 2A


If A = diag (2 − 59), B = diag (11 − 4) and C = diag (−6 3 4), find

2A + 3B − 5C


Find matrices X and Y, if X + Y =`[[5     2],[0       9]]`

and X − Y =  `[[3       6],[0   -1]]`

 


Find X if Y =`[[3       2],[1      4]]`and 2X + Y =`[[1       0],[-3        2]]`


Find xy satisfying the matrix equations

`[[X-Y               2            -2],[4                        x                6]]+[[3        -2                2],[1         0            -1]]=[[                6                       0                             0],[         5                       2x+y                5]]`


Find xy satisfying the matrix equations

`[x     y + 2    z-3 ] +  [  y       4          5]=[4        9        12]`


Find xyz and t, if

`3[[x     y],[z      t]]=[[x        6],[-1          2t]]+[[4             x+y],[z+t         3]]`

 


Find xyz and t, if

`2[[x         5],[z         t]]+[[x           6],[-1          2t]]=[[7            14],[15        14]]`


If X and Y are 2 × 2 matrices, then solve the following matrix equations for X and Y.

`2X + 3Y = [[2,3],[4,0]], 3X+2Y = [[-2,2],[1,-5]]`


 

\[A = \begin{bmatrix}0 & 1 & 0 \\ 0 & 0 & 1 \\ p & q & r\end{bmatrix}\] ,and I is the identity matrix of order 3, show that A3 = pI + qA +rA2.

If  \[A = \begin{bmatrix}2 & 3 \\ 5 & 7\end{bmatrix}\] , find A + AT.
 

 


If A = [aij] is a skew-symmetric matrix, then write the value of  \[\sum_i \sum_j\]  aij.


If  \[x\binom{2}{3} + y\binom{ - 1}{1} = \binom{10}{5}\] , find the value of x.


If  \[\binom{x + y}{x - y} = \begin{bmatrix}2 & 1 \\ 4 & 3\end{bmatrix}\binom{1}{ - 2}\] , then write the value of (xy).

 

If A = `[(2, 1)]`, B = `[(5, 3, 4),(8, 7, 6)]` and C = `[(-1, 2, 1),(1, 0, 2)]`, verify that A(B + C) = (AB + AC).


If A = `[(1, 0, -1),(2, 1, 3 ),(0, 1, 1)]`, then verify that A2 + A = A(A + I), where I is 3 × 3 unit matrix.


Let A = `[(1, 2),(-1, 3)]`, B = `[(4, 0),(1, 5)]`, C = `[(2, 0),(1, -2)]` and a = 4, b = –2. Show that: (a + b)B = aB + bB


If A = `[(0, -x),(x, 0)]`, B = `[(0, 1),(1, 0)]` and x2 = –1, then show that (A + B)2 = A2 + B2


Matrix multiplication is ______ over addition.


Matrices of any order can be added.


If A `= [(0,2),(2,0)],` then A2 is ____________.


If a2 + b2 + c2 = –2 and f(x) = `|(1 + a^2x, (1 + b^2)x, (1 + c^2)x),((1 + a^2)x, 1 + b^2x, (1 + c^2)x),((1 + a^2)x, (1 + b^2)x, (1 + c^2)x)|` then f(x) is a polynomial of degree ______.


Share
Notifications

Englishहिंदीमराठी


      Forgot password?
Use app×