Advertisements
Advertisements
प्रश्न
If A = diag (2 − 59), B = diag (11 − 4) and C = diag (−6 3 4), find
2A + 3B − 5C
उत्तर
Here,
`A = [[2 0 0],[0 -5 0],[0 0 0]]`
`B=[[1 0 0],[0 1 0],[0 0 -4]]`
and C = `[[-6 0 0],[0 3 0],[0 0 4]]`
`2A+3B-5C`
⇒2A+3B−5C=2 `[[2 0 0],[0 -5 0],[0 0 9]]` +3`[[1 0 0],[0 1 0],[0 0 -4]]` - 5`[[-6 0 0],[0 3 0],[0 0 4]]`
⇒2A+3B−5C= `[[4 0 0],[0 -10 0],[0 0 18]]` + `[[3 0 0],[0 3 0],[0 0 -12]]` - `[[-30 0 0],[0 15 0],[0 0 20]]`
⇒2A+3B−5C= `[[4 +3+30 0+0-0 0+0-0],[0+0-0 -10+3-15 0+0-0],[0+0-0 0+0-0 18-12-20]]`
⇒2A+3B−5C=`[[37 0 0],[0 -22 0],[0 0 -14 ]]`
=diag(37 −22 −14)
APPEARS IN
संबंधित प्रश्न
if `A=[[2,0,0],[0,2,0],[0,0,2]]` then A6= ......................
Solve the following matrix equation for x: `[x 1] [[1,0],[−2,0]]=0`
If `A=[[1,2,2],[2,1,2],[2,2,1]]` ,then show that `A^2-4A-5I=0` and hence find A-1.
Compute the following:
`[(a,b),(-b, a)] + [(a,b),(b,a)]`
Compute the following:
`[(a^2+b^2, b^2+c^2),(a^2+c^2, a^2+b^2)] + [(2ab , 2bc),(-2ac, -2ab)]`
Compute the following sums:
`[[3 -2],[1 4]]+ [[-2 4 ],[1 3]]`
Let A = `[[2,4],[3,2]]`, `B=[[1,3],[-2,5]]`and `c =[[-2,5],[3,4]]`.Find each of the following: 2A − 3B
Let A = `[[2,4],[3,2]]`, `B=[[1,3],[-2,5]]`and `c =[[-2,5],[3,4]]`.Find each of the following: B − 4C
Let A = `[[2,4],[3,2]]`, `B=[[1,3],[-2,5]]`and `c =[[-2,5],[3,4]]`.Find each of the following: 3A − C
Find X if Y =`[[3 2],[1 4]]`and 2X + Y =`[[1 0],[-3 2]]`
Find matrices X and Y, if 2X − Y = `[[6 -6 0],[-4 2 1]]`and X + 2Y =`[[3 2 5],[-2 1 -7 ]]`
If A =`[[9 1],[7 8]],B=[[1 5],[7 12]]`find matrix C such that 5A + 3B + 2C is a null matrix.
If A = `[[1 -3 2],[2 0 2]]`and `B = [[2 -1 -1],[1 0 -1]]` find the matrix C such that A + B + C is
, find the matrix C such that A + B + C is zero matrix.
Find x, y satisfying the matrix equations
`x[[2],[1]]+y[[3],[5]]+[[-8],[-11]]=0`
Find a matrix X such that 2A + B + X = O, where
If A = `[[8 0],[4 -2],[3 6]]` and B = `[[2 -2],[4 2],[-5 1]]`
, then find the matrix X of order 3 × 2 such that 2A + 3X = 5B.
Find x, y, z and t, if
`2[[x 5],[z t]]+[[x 6],[-1 2t]]=[[7 14],[15 14]]`
If w is a complex cube root of unity, show that
`([[1 w w^2],[w w^2 1],[w^2 1 w]]+[[w w^2 1],[w^2 1 w],[w w^2 1]])[[1],[w],[w^2]]=[[0],[0],[0]]`
If \[x\binom{2}{3} + y\binom{ - 1}{1} = \binom{10}{5}\] , find the value of x.
Addition of matrices is defined if order of the matrices is ______.
If A = `[(1, 2),(-2, 1)]`, B = `[(2, 3),(3, -4)]` and C = `[(1, 0),(-1, 0)]`, verify: A(B + C) = AB + AC
If A = `[(1, 2),(4, 1),(5, 6)]` B = `[(1, 2),(6, 4),(7, 3)]`, then verify that: (2A + B)′ = 2A′ + B′
Let A = `[(1, 2),(-1, 3)]`, B = `[(4, 0),(1, 5)]`, C = `[(2, 0),(1, -2)]` and a = 4, b = –2. Show that: (a + b)B = aB + bB
If A = `[(0, -x),(x, 0)]`, B = `[(0, 1),(1, 0)]` and x2 = –1, then show that (A + B)2 = A2 + B2.
Matrix multiplication is ______ over addition.
`"A" = [(1,-1),(2,-1)], "B" = [("x", 1),("y", -1)]` and (A + B)2 = A2 + B2, then x + y = ____________.
If `[(2"a"+"b", "a"-2"b"),(5"c" - "d", 4"c"+3"d")] = [(4, -3),(11, 24)]`, then value of a + b – c + 2d is:
If a2 + b2 + c2 = –2 and f(x) = `|(1 + a^2x, (1 + b^2)x, (1 + c^2)x),((1 + a^2)x, 1 + b^2x, (1 + c^2)x),((1 + a^2)x, (1 + b^2)x, (1 + c^2)x)|` then f(x) is a polynomial of degree ______.
Let A = `[(1, -1),(2, α)]` and B = `[(β, 1),(1, 0)]`, α, β ∈ R. Let α1 be the value of α which satisfies (A + B)2 = `A^2 + [(2, 2),(2, 2)]` and α2 be the value of α which satisfies (A + B)2 = B2 . Then |α1 – α2| is equal to ______.