Advertisements
Advertisements
प्रश्न
If A = `[(2, 1)]`, B = `[(5, 3, 4),(8, 7, 6)]` and C = `[(-1, 2, 1),(1, 0, 2)]`, verify that A(B + C) = (AB + AC).
उत्तर
We have A = `[(2, 1)]`, B = `[(5, 3, 4),(8, 7, 6)]` and C = `[(-1, 2, 1),(1, 0, 2)]`
∴ A(B + C) = `[(2, 1)] [(5 - 1, 3 + 2, 4 + 1),(8 + 1, 7 + 0, 6 + 2)]`
= `[(2, 1)] [(4, 5, 5),(9, 7, 8)]`
= `[(8 + 9, 10 + 7, 10 + 8)]`
= `[(17, 17, 18)]` ......(i)
Now AB = `[(2, 1)] [(5, 3, 4),(8, 7, 6)]`
= `[(10 + 8, 6 + 7, 8 + 6)]`
= `[(18, 3, 14)]`
And AC =`[(2, 1)] [(-1, 2, 1),(1, 0, 2)]`
= `[(-2 + 1, 4 + 0, 2 + 2)]`
`[(-1, 4, 4)]`
∴ AB + AC = `[(18, 13, 14)] + [(-1, 4, 4)]`
= `[(17, 17, 18)]` ......(ii)
From equations (i) and (ii)
A(B + C) = (AB + AC)
APPEARS IN
संबंधित प्रश्न
if `A=[[2,0,0],[0,2,0],[0,0,2]]` then A6= ......................
If `A=([2,0,1],[2,1,3],[1,-1,0])` find A2 - 5A + 4I and hence find a matrix X such that A2 - 5A + 4I + X = 0
Let `A = [(2,4),(3,2)] , B = [(1,3),(-2,5)], C = [(-2,5),(3,4)]`
Find A + B
Compute the following:
`[(-1,4, -6),(8,5,16),(2,8,5)] + [(12,7,6),(8,0,5),(3,2,4)]`
Compute the following:
`[(cos^2x, sin^2 x),(sin^2 x ,cos^2 x)]+[(sin^2 x, cos^2 x), (cos^2 x, sin^2 x)]`
Let A = `[[2,4],[3,2]]`, `B=[[1,3],[-2,5]]`and `c =[[-2,5],[3,4]]`.Find each of the following: 2A − 3B
If A =`[[2 3],[5 7]],B =` `[[-1 0 2],[3 4 1]]`,`C= [[-1 2 3],[2 1 0]]`find
2B + 3A and 3C − 4B
If A = diag (2 − 59), B = diag (11 − 4) and C = diag (−6 3 4), find
2A + 3B − 5C
Find matrices X and Y, if 2X − Y = `[[6 -6 0],[-4 2 1]]`and X + 2Y =`[[3 2 5],[-2 1 -7 ]]`
If A = `[[1 -3 2],[2 0 2]]`and `B = [[2 -1 -1],[1 0 -1]]` find the matrix C such that A + B + C is
, find the matrix C such that A + B + C is zero matrix.
Find x, y satisfying the matrix equations
`[[X-Y 2 -2],[4 x 6]]+[[3 -2 2],[1 0 -1]]=[[ 6 0 0],[ 5 2x+y 5]]`
If 2 `[[3 4],[5 x]]+[[1 y],[0 1]]=[[7 0],[10 5]]` find x and y.
Find a matrix X such that 2A + B + X = O, where
`A= [[-1 2],[3 4]],B= [[3 -2],[1 5]]`
Find x, y, z and t, if
`2[[x 5],[z t]]+[[x 6],[-1 2t]]=[[7 14],[15 14]]`
If w is a complex cube root of unity, show that
`([[1 w w^2],[w w^2 1],[w^2 1 w]]+[[w w^2 1],[w^2 1 w],[w w^2 1]])[[1],[w],[w^2]]=[[0],[0],[0]]`
Find the values of x and y, if \[2\begin{bmatrix}1 & 3 \\ 0 & x\end{bmatrix} + \begin{bmatrix}y & 0 \\ 1 & 2\end{bmatrix} = \begin{bmatrix}5 & 6 \\ 1 & 8\end{bmatrix}\]
If \[x\binom{2}{3} + y\binom{ - 1}{1} = \binom{10}{5}\] , find the value of x.
If \[2\begin{bmatrix}3 & 4 \\ 5 & x\end{bmatrix} + \begin{bmatrix}1 & y \\ 0 & 1\end{bmatrix} = \begin{bmatrix}7 & 0 \\ 10 & 5\end{bmatrix}\] , find x − y.
If \[\binom{x + y}{x - y} = \begin{bmatrix}2 & 1 \\ 4 & 3\end{bmatrix}\binom{1}{ - 2}\] , then write the value of (x, y).
Addition of matrices is defined if order of the matrices is ______.
If A = `[(1, 2),(4, 1),(5, 6)]` B = `[(1, 2),(6, 4),(7, 3)]`, then verify that: (2A + B)′ = 2A′ + B′
Let A = `[(1, 2),(-1, 3)]`, B = `[(4, 0),(1, 5)]`, C = `[(2, 0),(1, -2)]` and a = 4, b = –2. Show that: A + (B + C) = (A + B) + C
Matrices of any order can be added.
If a2 + b2 + c2 = –2 and f(x) = `|(1 + a^2x, (1 + b^2)x, (1 + c^2)x),((1 + a^2)x, 1 + b^2x, (1 + c^2)x),((1 + a^2)x, (1 + b^2)x, (1 + c^2)x)|` then f(x) is a polynomial of degree ______.