English

If X and Y are 2 × 2 matrices, then solve the following matrix equations for X and Y. 2X+3Y=[2340],3X+2Y=[-221-5] - Mathematics

Advertisements
Advertisements

Question

If X and Y are 2 × 2 matrices, then solve the following matrix equations for X and Y.

`2X + 3Y = [[2,3],[4,0]], 3X+2Y = [[-2,2],[1,-5]]`

Sum

Solution

We have,

3(2X+3Y)−2(3X+2Y)=3 `[[2,3],[4,0]]-2 [[-2,2],[1,-5]]`

⇒6X+9Y−6X−4Y= `3[[6,9],[4,0]]+[[4,-4],[-2,10]]`

⇒5Y= `[[6+4,9-4],[12-2,0+10]]`

⇒Y=`1/5 [[10,5],[10,10]]`

⇒Y=`[[2,1],[2,2]]`.............................(1)

Also,

2(2X+3Y)−3(3X+2Y)=2 `[[2,3],[4,0]]-3[[-2,2],[1,-5]]`

⇒4X+6Y−9X−6Y=`[[4,6],[8,0]]+[[6,-6],[-3,15]]`

⇒−5X= `[[6+4,6-6],[8-3,0+15]]`

⇒X=`1/-5[[10,0],[5,15]]`

⇒X= `[[-2,0],[-1,-3]]`...................(2)

From (1) and (2), we get

`X=[[-2,0],[-1,-3]]` And  `Y= [[2,1],[2,2]]`

shaalaa.com
  Is there an error in this question or solution?
Chapter 5: Algebra of Matrices - Exercise 5.2 [Page 19]

APPEARS IN

RD Sharma Mathematics [English] Class 12
Chapter 5 Algebra of Matrices
Exercise 5.2 | Q 20 | Page 19

Video TutorialsVIEW ALL [1]

RELATED QUESTIONS

If `A=[[1,2,2],[2,1,2],[2,2,1]]` ,then show that `A^2-4A-5I=0` and hence find A-1.


Compute the following:

`[(a,b),(-b, a)] + [(a,b),(b,a)]`


Compute the following:

`[(a^2+b^2, b^2+c^2),(a^2+c^2, a^2+b^2)] + [(2ab , 2bc),(-2ac, -2ab)]`


Compute the following: 

`[(-1,4, -6),(8,5,16),(2,8,5)] + [(12,7,6),(8,0,5),(3,2,4)]`


Compute the following:

`[(cos^2x, sin^2 x),(sin^2 x ,cos^2 x)]+[(sin^2 x, cos^2 x), (cos^2 x, sin^2 x)]`


Let A = `[[2,4],[3,2]]`, `B=[[1,3],[-2,5]]`and `c =[[-2,5],[3,4]]`.Find each of the following: 3A − 2B + 3C


Let A = `[[-1    0    2],[3     1      4]]``B=[[0      -2     5],[1      -3     1]]``and C = [[1     -5       2],[6     0    -4 ]]`Compute2A2-3B +4C : 


Find matrices X and Y, if X + Y =`[[5     2],[0       9]]`

and X − Y =  `[[3       6],[0   -1]]`

 


X − Y =`[[1      1       1],[1        1          0],[1         0          0]]` and X + Y = `[[3        5         1],[-1       1           1],[11       8           0]]`find X and Y.


If A =`[[9     1],[7      8]],B=[[1      5],[7      12]]`find matrix C such that 5A + 3B + 2C is a null matrix.


If A = `[[2      -2],[4             2],[-5          1]],B=[[8             0],[4      -2],[3          6]]`

, find matrix X such that 2A + 3X = 5B.

 

Find the value of λ, a non-zero scalar, if λ


Find a matrix X such that 2A + B + X = O, where

`A= [[-1      2],[3        4]],B= [[3       -2],[1          5]]`


Find a matrix X such that 2A + B + X = O, where 

 If A = `[[8            0],[4    -2],[3         6]]` and B = `[[2       -2],[4           2],[-5          1]]`

, then find the matrix X of order 3 × 2 such that 2A + 3X = 5B.

 

Find xyz and t, if

`3[[x     y],[z      t]]=[[x        6],[-1          2t]]+[[4             x+y],[z+t         3]]`

 


If w is a complex cube root of unity, show that

`([[1         w          w^2],[w            w^2             1],[w^2           1             w]]+[[w          w^2          1],[w^2             1               w],[w            w^2              1]])[[1],[w],[w^2]]=[[0],[0],[0]]`


 Let  \[A = \begin{bmatrix}3 & 2 & 7 \\ 1 & 4 & 3 \\ - 2 & 5 & 8\end{bmatrix} .\] Find matrices X and Y such that X + Y = A, where X is a symmetric and Y is a skew-symmetric matrix

 


If  \[A = \begin{bmatrix}2 & 3 \\ 5 & 7\end{bmatrix}\] , find A + AT.
 

 


If \[A = \begin{bmatrix}\cos x & \sin x \\ - \sin x & \cos x\end{bmatrix}\] , find x satisfying 0 < x < \[\frac{\pi}{2}\] when A + AT = I


If  \[x\binom{2}{3} + y\binom{ - 1}{1} = \binom{10}{5}\] , find the value of x.


If  \[2\begin{bmatrix}3 & 4 \\ 5 & x\end{bmatrix} + \begin{bmatrix}1 & y \\ 0 & 1\end{bmatrix} = \begin{bmatrix}7 & 0 \\ 10 & 5\end{bmatrix}\] , find x − y.

 

 


If  \[\begin{bmatrix}xy & 4 \\ z + 6 & x + y\end{bmatrix} = \begin{bmatrix}8 & w \\ 0 & 6\end{bmatrix}\] , write the value of (x + y + z).


Addition of matrices is defined if order of the matrices is ______.


If possible, find the sum of the matrices A and B, where A = `[(sqrt(3), 1),(2, 3)]`, and B = `[(x, y, z),(a, "b", 6)]`


If A = `[(1, 2),(-2, 1)]`, B = `[(2, 3),(3, -4)]` and C = `[(1, 0),(-1, 0)]`, verify: A(B + C) = AB + AC


If A = `[(1, 0, -1),(2, 1, 3 ),(0, 1, 1)]`, then verify that A2 + A = A(A + I), where I is 3 × 3 unit matrix.


Let A = `[(1, 2),(-1, 3)]`, B = `[(4, 0),(1, 5)]`, C = `[(2, 0),(1, -2)]` and a = 4, b = –2. Show that: (a + b)B = aB + bB


If A = `[(1, 2),(4, 1)]`, find A2 + 2A + 7I.


Matrix multiplication is ______ over addition.


Matrices of any order can be added.


If a2 + b2 + c2 = –2 and f(x) = `|(1 + a^2x, (1 + b^2)x, (1 + c^2)x),((1 + a^2)x, 1 + b^2x, (1 + c^2)x),((1 + a^2)x, (1 + b^2)x, (1 + c^2)x)|` then f(x) is a polynomial of degree ______.


Share
Notifications

Englishहिंदीमराठी


      Forgot password?
Use app×