मराठी

If f is continuous on its domain D, then |f| is also continuous on D. - Mathematics

Advertisements
Advertisements

प्रश्न

If f is continuous on its domain D, then |f| is also continuous on D.

पर्याय

  • True

  • False

MCQ
चूक किंवा बरोबर

उत्तर

This statement is True.

Explanation:

We know that modulus function is continuous function on its domain.

shaalaa.com
  या प्रश्नात किंवा उत्तरात काही त्रुटी आहे का?
पाठ 5: Continuity And Differentiability - Exercise [पृष्ठ ११६]

APPEARS IN

एनसीईआरटी एक्झांप्लर Mathematics [English] Class 12
पाठ 5 Continuity And Differentiability
Exercise | Q 103 | पृष्ठ ११६

व्हिडिओ ट्यूटोरियलVIEW ALL [4]

संबंधित प्रश्‍न

 If 'f' is continuous at x = 0, then find f(0).

`f(x)=(15^x-3^x-5^x+1)/(xtanx) , x!=0`


Discuss the continuity of the following functions at the indicated point(s): 

(i) \[f\left( x \right) = \begin{cases}\left| x \right| \cos\left( \frac{1}{x} \right), & x \neq 0 \\ 0 , & x = 0\end{cases}at x = 0\]

 


Discuss the continuity of the following functions at the indicated point(s): (iv) \[f\left( x \right) = \left\{ \begin{array}{l}\frac{e^x - 1}{\log(1 + 2x)}, if & x \neq a \\ 7 , if & x = 0\end{array}at x = 0 \right.\]


Show that 

\[f\left( x \right) = \begin{cases}1 + x^2 , if & 0 \leq x \leq 1 \\ 2 - x , if & x > 1\end{cases}\]


In each of the following, find the value of the constant k so that the given function is continuous at the indicated point;  

\[f\left( x \right) = \begin{cases}k( x^2 - 2x), \text{ if }  & x < 0 \\ \cos x, \text{ if }  & x \geq 0\end{cases}\] at x = 0

In each of the following, find the value of the constant k so that the given function is continuous at the indicated point; 

\[f\left( x \right) = \begin{cases}kx + 1, \text{ if }  & x \leq \pi \\ \cos x, \text{ if }  & x > \pi\end{cases}\] at x = π

Find all the points of discontinuity of f defined by f (x) = | x |− | x + 1 |.


If f (x) = | x − a | ϕ (x), where ϕ (x) is continuous function, then


\[f\left( x \right) = \begin{cases}\frac{\sqrt{1 + px} - \sqrt{1 - px}}{x}, & - 1 \leq x < 0 \\ \frac{2x + 1}{x - 2} , & 0 \leq x \leq 1\end{cases}\]is continuous in the interval [−1, 1], then p is equal to

 


If  \[f\left( x \right) = \frac{1}{1 - x}\] , then the set of points discontinuity of the function f (f(f(x))) is


If  \[f\left( x \right) = \begin{cases}a \sin\frac{\pi}{2}\left( x + 1 \right), & x \leq 0 \\ \frac{\tan x - \sin x}{x^3}, & x > 0\end{cases}\] is continuous at x = 0, then a equals


Show that the function 

\[f\left( x \right) = \begin{cases}x^m \sin\left( \frac{1}{x} \right) & , x \neq 0 \\ 0 & , x = 0\end{cases}\]

(i) differentiable at x = 0, if m > 1
(ii) continuous but not differentiable at x = 0, if 0 < m < 1
(iii) neither continuous nor differentiable, if m ≤ 0


Discuss the continuity and differentiability of f (x) = e|x| .


Discuss the continuity and differentiability of 

\[f\left( x \right) = \begin{cases}\left( x - c \right) \cos \left( \frac{1}{x - c} \right), & x \neq c \\ 0 , & x = c\end{cases}\]

Give an example of a function which is continuos but not differentiable at at a point.


Let \[f\left( x \right) = \begin{cases}\frac{1}{\left| x \right|} & for \left| x \right| \geq 1 \\ a x^2 + b & for \left| x \right| < 1\end{cases}\] If f (x) is continuous and differentiable at any point, then

 

 

 


Find the points of discontinuity , if any for the function : f(x) = `(x^2 - 9)/(sinx - 9)`


Find the value of 'k' if the function 
f(x) = `(tan 7x)/(2x)`,                   for x ≠ 0.
      = k                                        for x = 0.
is continuous at x = 0.


Discuss the continuity of function f at x = 0.
Where f(X) = `[ [sqrt ( 4 + x ) - 2 ]/ ( 3x )]`, For x ≠ 0
                  = `1/12`,                      For x = 0


Discuss the continuity of the function at the point given. If the function is discontinuous, then remove the discontinuity.

f (x) = `(sin^2 5x)/x^2` for x ≠ 0 
= 5   for x = 0, at x = 0


Discuss the continuity of the function `f(x) = (3 - sqrt(2x + 7))/(x - 1)` for x ≠ 1

= `-1/3`   for x = 1, at x = 1


If Y = tan-1 `[(cos 2x - sin 2x)/(sin2x + cos 2x)]` then find `(dy)/(dx)`


If f(x) = `{{:((x^3 + x^2 - 16x + 20)/(x - 2)^2",", x ≠ 2),("k"",", x = 2):}` is continuous at x = 2, find the value of k.


f(x) = `{{:(|x - "a"| sin  1/(x - "a")",",  "if"  x ≠ 0),(0",",  "if"  x = "a"):}` at x = a


f(x) = `{{:(x^2/2",",  "if"  0 ≤ x ≤ 1),(2x^2 - 3x + 3/2",",  "if"  1 < x ≤ 2):}` at x = 1


f(x) = `{{:((sqrt(1 + "k"x) - sqrt(1 - "k"x))/x",",  "if" -1 ≤ x < 0),((2x + 1)/(x - 1)",",  "if"  0 ≤ x ≤ 1):}` at x = 0


The composition of two continuous function is a continuous function.


The value of k (k < 0) for which the function f defined as

f(x) = `{((1-cos"kx")/("x"sin"x")","  "x" ≠ 0),(1/2","  "x" = 0):}`

is continuous at x = 0 is:


If the following function is continuous at x = 2 then the value of k will be ______.

f(x) = `{{:(2x + 1",", if x < 2),(                 k",", if x = 2),(3x - 1",", if x > 2):}`


Share
Notifications

Englishहिंदीमराठी


      Forgot password?
Use app×