Advertisements
Advertisements
प्रश्न
Show that the function
(i) differentiable at x = 0, if m > 1
(ii) continuous but not differentiable at x = 0, if 0 < m < 1
(iii) neither continuous nor differentiable, if m ≤ 0
उत्तर
Given:
\[f(x) = \binom{ x^m \sin\left( \frac{1}{x} \right)}{0}\] x≠0 , x=0
(i) Let m=2, then the function becomes
Hence the given function is differentiable at x=0.
Continuity at x=0:
(LHL at x=0) =
\[\lim_{x \to 0^-} f(x) = \lim_{h \to 0} f(0 - h) = \lim_{h \to 0} ( - h )^\frac{1}{2} \sin\left( \frac{1}{0 - h} \right) = \lim_{h \to 0} h^\frac{1}{2} \sin\left( \frac{1}{h} \right) = \lim_{h \to 0} h^\frac{3}{2} = 0\]
(RHL at x=0) =
and
LHL at x=0 = RHL at x=0 =
Hence continuous.
Now Differentiabilty at x=0 when 0<m<1.
(LHD at x=0) =
\[\lim_{x \to 0^-} \frac{f(x) - f(0)}{x - 0} = \lim_{h \to 0} \frac{f(0 - h) - f(0)}{0 - h - 0} = \lim_{h \to 0} \frac{( - h )^\frac{1}{2} \sin\left( \frac{1}{- h} \right)}{- h}\]
APPEARS IN
संबंधित प्रश्न
Examine the following function for continuity:
`f (x)1/(x - 5), x != 5`
If \[f\left( x \right) = \begin{cases}\frac{\sin 3x}{x}, when & x \neq 0 \\ 1 , when & x = 0\end{cases}\]
Find whether f(x) is continuous at x = 0.
Show that
is discontinuous at x = 0.
Discuss the continuity of the following functions at the indicated point(s):
Show that
\[f\left( x \right) = \begin{cases}\frac{\sin 3x}{\tan 2x} , if x < 0 \\ \frac{3}{2} , if x = 0 \\ \frac{\log(1 + 3x)}{e^{2x} - 1} , if x > 0\end{cases}\text{is continuous at} x = 0\]
Determine the value of the constant k so that the function
\[f\left( x \right) = \left\{ \begin{array}{l}\frac{x^2 - 3x + 2}{x - 1}, if & x \neq 1 \\ k , if & x = 1\end{array}\text{is continuous at x} = 1 \right.\]
Determine the values of a, b, c for which the function f(x) = `{((sin(a + 1)x + sin x)/x, "for" x < 0),(x, "for" x = 0),((sqrt(x + bx^2) - sqrtx)/(bx^(3"/"2)), "for" x > 0):}` is continuous at x = 0.
In each of the following, find the value of the constant k so that the given function is continuous at the indicated point;
In each of the following, find the value of the constant k so that the given function is continuous at the indicated point;
In each of the following, find the value of the constant k so that the given function is continuous at the indicated point; \[f\left( x \right) = \binom{\frac{x^3 + x^2 - 16x + 20}{\left( x - 2 \right)^2}, x \neq 2}{k, x = 2}\]
Prove that \[f\left( x \right) = \begin{cases}\frac{x - \left| x \right|}{x}, & x \neq 0 \\ 2 , & x = 0\end{cases}\] is discontinuous at x = 0
For what value of k is the following function continuous at x = 2?
Write the value of b for which \[f\left( x \right) = \begin{cases}5x - 4 & 0 < x \leq 1 \\ 4 x^2 + 3bx & 1 < x < 2\end{cases}\] is continuous at x = 1.
If f (x) = | x − a | ϕ (x), where ϕ (x) is continuous function, then
The value of f (0), so that the function
If \[f\left( x \right) = \begin{cases}\frac{1 - \sin^2 x}{3 \cos^2 x} , & x < \frac{\pi}{2} \\ a , & x = \frac{\pi}{2} \\ \frac{b\left( 1 - \sin x \right)}{\left( \pi - 2x \right)^2}, & x > \frac{\pi}{2}\end{cases}\]. Then, f (x) is continuous at \[x = \frac{\pi}{2}\], if
Discuss the continuity and differentiability of f (x) = e|x| .
If \[f\left( x \right) = x^2 + \frac{x^2}{1 + x^2} + \frac{x^2}{\left( 1 + x^2 \right)} + . . . + \frac{x^2}{\left( 1 + x^2 \right)} + . . . . ,\]
then at x = 0, f (x)
If \[f\left( x \right) = \left| \log_e |x| \right|\]
The function f (x) = |cos x| is
If \[f\left( x \right) = \begin{cases}\frac{1}{1 + e^{1/x}} & , x \neq 0 \\ 0 & , x = 0\end{cases}\] then f (x) is
Discuss the continuity of f at x = 1
Where f(X) = `[ 3 - sqrt ( 2x + 7 ) / ( x - 1 )]` For x ≠ 1
= `-1/3` For x = 1
If f is continuous at x = 0 then find f(0) where f(x) = `[5^x + 5^-x - 2]/x^2`, x ≠ 0
Find `dy/dx if y = tan^-1 ((6x)/[ 1 - 5x^2])`
If y = ( sin x )x , Find `dy/dx`
If the function f is continuous at x = 0 then find f(0),
where f(x) = `[ cos 3x - cos x ]/x^2`, `x!=0`
Let f(x) = `{{:((1 - cos 4x)/x^2",", "if" x < 0),("a"",", "if" x = 0),(sqrt(x)/(sqrt(16) + sqrt(x) - 4)",", "if" x > 0):}`. For what value of a, f is continuous at x = 0?
The function f(x) = [x], where [x] denotes the greatest integer function, is continuous at ______.
The function given by f (x) = tanx is discontinuous on the set ______.
The function f(x) = |x| + |x – 1| is ______.
The value of k which makes the function defined by f(x) = `{{:(sin 1/x",", "if" x ≠ 0),("k"",", "if" x = 0):}`, continuous at x = 0 is ______.
f(x) = `{{:(|x - 4|/(2(x - 4))",", "if" x ≠ 4),(0",", "if" x = 4):}` at x = 4
f(x) = `{{:(x^2/2",", "if" 0 ≤ x ≤ 1),(2x^2 - 3x + 3/2",", "if" 1 < x ≤ 2):}` at x = 1
f(x) = `{{:(3x - 8",", "if" x ≤ 5),(2"k"",", "if" x > 5):}` at x = 5
Examine the differentiability of f, where f is defined by
f(x) = `{{:(1 + x",", "if" x ≤ 2),(5 - x",", "if" x > 2):}` at x = 2
Show that f(x) = |x – 5| is continuous but not differentiable at x = 5.
The set of points where the function f given by f(x) = |2x − 1| sinx is differentiable is ______.