मराठी

Show that the Function F ( X ) = { X M Sin ( 1 X ) , X ≠ 0 0 , X = 0 (I) Differentiable at X = 0, If M > 1 (Ii) Continuous but Not Differentiable at X = 0, If 0 < M < 1 - Mathematics

Advertisements
Advertisements

प्रश्न

Show that the function 

\[f\left( x \right) = \begin{cases}x^m \sin\left( \frac{1}{x} \right) & , x \neq 0 \\ 0 & , x = 0\end{cases}\]

(i) differentiable at x = 0, if m > 1
(ii) continuous but not differentiable at x = 0, if 0 < m < 1
(iii) neither continuous nor differentiable, if m ≤ 0

बेरीज

उत्तर

Given: 

\[f(x) = \binom{ x^m \sin\left( \frac{1}{x} \right)}{0}\]      x≠0 , x=0

(i) Let m=2, then the function becomes 

\[f(x) = \binom{ x^2 \sin\left( \frac{1}{x} \right)}{0}\] ,  x≠0, x=0
Differentiability at x=0:
\[\lim_{x \to 0} \frac{f(x) - f(0)}{x - 0} = \lim_{x \to 0} \frac{f(x)}{x} = \lim_{x \to 0} x \sin\left( \frac{1}{x} \right) = 0 .\]
\[\lim_{x \to 0} x \sin\left( \frac{1}{x} \right) = 0\]
\[\left| x \sin\frac{1}{x} - 0 \right| = \left| x \sin\frac{1}{x} \right| = \left| x \right| \left| \sin\frac{1}{x} \right| \leq \left| x \right|\]
\[\left| x \sin\frac{1}{x} - 0 \right| = \left| x \sin\frac{1}{x} \right| = \left| x \right| \left| \sin\frac{1}{x} \right| \leq \left| x \right|\]
\[\theta\]) and hence 
\[\left| x \sin\frac{1}{x} \right| < 0 \] when 
\[\left| x - 0 \right| < \epsilon\]
So,  
\[f'(0) = 0\] which means f is differentiable at x=0.
Hence the given function is differentiable at x=0.
(ii) Let 
\[m = \frac{1}{2}, 0 < m < 1\]. Then the function becomes
\[f(x) = \left\{ \begin{array}{l}x^\frac{1}{2} \\ 0\end{array}\sin\left( \frac{1}{x} \right) \right.\]  ,     x≠0 , x=0

Continuity at x=0:
(LHL at x=0) = 

\[\lim_{x \to 0^-} f(x) = \lim_{h \to 0} f(0 - h) = \lim_{h \to 0} ( - h )^\frac{1}{2} \sin\left( \frac{1}{0 - h} \right) = \lim_{h \to 0} h^\frac{1}{2} \sin\left( \frac{1}{h} \right) = \lim_{h \to 0} h^\frac{3}{2} = 0\]

(RHL at x=0) = 

\[\lim_{x \to 0^+} f(x) = \lim_{h \to 0} f(0 + h) = \lim_{h \to 0} h^\frac{1}{2} \sin\left( \frac{1}{h} \right) = \lim_{h \to 0} h^\frac{3}{2} = 0\]

and 

\[f(0) = 0\]

LHL at x=0 = RHL at x=0 = 

\[\lim_{x \to 0} f(x)\]

Hence continuous.
Now Differentiabilty at x=0 when 0<m<1.
(LHD at x=0) = 

\[\lim_{x \to 0^-} \frac{f(x) - f(0)}{x - 0} = \lim_{h \to 0} \frac{f(0 - h) - f(0)}{0 - h - 0} = \lim_{h \to 0} \frac{( - h )^\frac{1}{2} \sin\left( \frac{1}{- h} \right)}{- h}\]

shaalaa.com
  या प्रश्नात किंवा उत्तरात काही त्रुटी आहे का?
पाठ 10: Differentiability - Exercise 10.1 [पृष्ठ १०]

APPEARS IN

आरडी शर्मा Mathematics [English] Class 12
पाठ 10 Differentiability
Exercise 10.1 | Q 7 | पृष्ठ १०

व्हिडिओ ट्यूटोरियलVIEW ALL [4]

संबंधित प्रश्‍न

Examine the following function for continuity:

`f (x)1/(x - 5), x != 5`


If \[f\left( x \right) = \begin{cases}\frac{\sin 3x}{x}, when & x \neq 0 \\ 1 , when & x = 0\end{cases}\]

Find whether f(x) is continuous at x = 0.

 

Show that

\[f\left( x \right)\] = \begin{cases}\frac{x - \left| x \right|}{2}, when & x \neq 0 \\ 2 , when & x = 0\end{cases}

is discontinuous at x = 0.

 

Discuss the continuity of the following functions at the indicated point(s): 

\[f\left( x \right) = \left\{ \begin{array}{l}\frac{1 - x^n}{1 - x}, & x \neq 1 \\ n - 1 , & x = 1\end{array}n \in N \right.at x = 1\]

Show that 

\[f\left( x \right) = \begin{cases}\frac{\sin 3x}{\tan 2x} , if x < 0 \\ \frac{3}{2} , if x = 0 \\ \frac{\log(1 + 3x)}{e^{2x} - 1} , if x > 0\end{cases}\text{is continuous at} x = 0\]


Determine the value of the constant k so that the function 

\[f\left( x \right) = \left\{ \begin{array}{l}\frac{x^2 - 3x + 2}{x - 1}, if & x \neq 1 \\ k , if & x = 1\end{array}\text{is continuous at x} = 1 \right.\] 


Determine the values of a, b, c for which the function f(x) = `{((sin(a + 1)x + sin x)/x, "for"   x < 0),(x, "for"  x = 0),((sqrt(x + bx^2) - sqrtx)/(bx^(3"/"2)), "for"  x > 0):}` is continuous at x = 0.


In each of the following, find the value of the constant k so that the given function is continuous at the indicated point;  

\[f\left( x \right) = \begin{cases}k( x^2 - 2x), \text{ if }  & x < 0 \\ \cos x, \text{ if }  & x \geq 0\end{cases}\] at x = 0

In each of the following, find the value of the constant k so that the given function is continuous at the indicated point; 

\[f\left( x \right) = \begin{cases}kx + 1, \text{ if }  & x \leq \pi \\ \cos x, \text{ if }  & x > \pi\end{cases}\] at x = π

In each of the following, find the value of the constant k so that the given function is continuous at the indicated point; \[f\left( x \right) = \binom{\frac{x^3 + x^2 - 16x + 20}{\left( x - 2 \right)^2}, x \neq 2}{k, x = 2}\] 

 


Prove that  \[f\left( x \right) = \begin{cases}\frac{x - \left| x \right|}{x}, & x \neq 0 \\ 2 , & x = 0\end{cases}\] is discontinuous at x = 0

 


For what value of k is the following function continuous at x = 2? 

\[f\left( x \right) = \begin{cases}2x + 1 ; & \text{ if } x < 2 \\ k ; & x = 2 \\ 3x - 1 ; & x > 2\end{cases}\]

Write the value of b for which \[f\left( x \right) = \begin{cases}5x - 4 & 0 < x \leq 1 \\ 4 x^2 + 3bx & 1 < x < 2\end{cases}\]  is continuous at x = 1.

 


If f (x) = | x − a | ϕ (x), where ϕ (x) is continuous function, then


The value of f (0), so that the function 

\[f\left( x \right) = \frac{\sqrt{a^2 - ax + x^2} - \sqrt{a^2 + ax + x^2}}{\sqrt{a + x} - \sqrt{a - x}}\]   becomes continuous for all x, given by

If  \[f\left( x \right) = \begin{cases}\frac{1 - \sin^2 x}{3 \cos^2 x} , & x < \frac{\pi}{2} \\ a , & x = \frac{\pi}{2} \\ \frac{b\left( 1 - \sin x \right)}{\left( \pi - 2x \right)^2}, & x > \frac{\pi}{2}\end{cases}\]. Then, f (x) is continuous at  \[x = \frac{\pi}{2}\], if

 


Discuss the continuity and differentiability of f (x) = e|x| .


If \[f\left( x \right) = x^2 + \frac{x^2}{1 + x^2} + \frac{x^2}{\left( 1 + x^2 \right)} + . . . + \frac{x^2}{\left( 1 + x^2 \right)} + . . . . ,\] 

then at x = 0, f (x)


If \[f\left( x \right) = \left| \log_e |x| \right|\] 


The function f (x) =  |cos x| is


If \[f\left( x \right) = \begin{cases}\frac{1}{1 + e^{1/x}} & , x \neq 0 \\ 0 & , x = 0\end{cases}\]  then f (x) is 


Discuss the continuity of f at x = 1
Where f(X) = `[ 3 - sqrt ( 2x + 7 ) / ( x - 1 )]`           For x ≠ 1
                    = `-1/3`                                                 For x = 1


If f is continuous at x = 0 then find f(0) where f(x) = `[5^x + 5^-x - 2]/x^2`, x ≠ 0


Find `dy/dx if y = tan^-1 ((6x)/[ 1 - 5x^2])`


If y = ( sin x )x , Find `dy/dx`


If the function f is continuous at x = 0 then find f(0),
where f(x) =  `[ cos 3x - cos x ]/x^2`, `x!=0`


Let f(x) = `{{:((1 - cos 4x)/x^2",",  "if"  x < 0),("a"",",  "if"  x = 0),(sqrt(x)/(sqrt(16) + sqrt(x) - 4)",", "if"  x > 0):}`. For what value of a, f is continuous at x = 0?


The function f(x) = [x], where [x] denotes the greatest integer function, is continuous at ______.


The function given by f (x) = tanx is discontinuous on the set ______.


The function f(x) = |x| + |x – 1| is ______.


The value of k which makes the function defined by f(x) = `{{:(sin  1/x",",  "if"  x ≠ 0),("k"",",  "if"  x = 0):}`, continuous at x = 0 is ______.


f(x) = `{{:(|x - 4|/(2(x - 4))",", "if"  x ≠ 4),(0",", "if"  x = 4):}` at x = 4


f(x) = `{{:(x^2/2",",  "if"  0 ≤ x ≤ 1),(2x^2 - 3x + 3/2",",  "if"  1 < x ≤ 2):}` at x = 1


f(x) = `{{:(3x - 8",",  "if"  x ≤ 5),(2"k"",",  "if"  x > 5):}` at x = 5


Examine the differentiability of f, where f is defined by
f(x) = `{{:(1 + x",",  "if"  x ≤ 2),(5 - x",",  "if"  x > 2):}` at x = 2


Show that f(x) = |x – 5| is continuous but not differentiable at x = 5.


The set of points where the function f given by f(x) = |2x − 1| sinx is differentiable is ______.


Share
Notifications

Englishहिंदीमराठी


      Forgot password?
Use app×