Advertisements
Advertisements
प्रश्न
If \[f\left( x \right) = \left| \log_e |x| \right|\]
पर्याय
f (x) is continuous and differentiable for all x in its domain
f (x) is continuous for all for all × in its domain but not differentiable at x = ± 1
(x) is neither continuous nor differentiable at x = ± 1
none of these
उत्तर
(b) f (x) is continuous for all x in its domain but not differentiable at x = ± 1
We have,
\[f\left( x \right) = \left| \log_e |x| \right|\]
\[\text{We know that log function is defined for positive value} . \]
\[\text{Here,} \left| x \right| \text { is positive for all non zero x} . \]
\[\text{Therefore, domain of function is R} - \left\{ 0 \right\}\]
And we know that logarithmic function is continuous in its domain.
\[\left( \text { LHD at x } = - 1 \right) = \lim_{x \to - 1^-} \frac{f\left( x \right) - f\left( - 1 \right)}{x - \left( - 1 \right)}\]
\[ = \lim_{x \to - 1^-} \frac{\log_e \left( - x \right) - 0}{x + 1}\]
\[ = \lim_{h \to 0} \frac{\log_e \left[ - \left( - 1 - h \right) \right]}{- 1 - h + 1}\]
\[ = \lim_{h \to 0} \frac{\log_e \left( 1 + h \right)}{- h}\]
\[ = - 1\]
\[\left( \text { RHD at x } = - 1 \right) = \lim_{x \to - 1^+} \frac{f\left( x \right) - f\left( - 1 \right)}{x - \left( - 1 \right)}\]
\[ = \lim_{x \to - 1^+} \frac{- \log_e \left( - x \right) - 0}{x + 1}\]
\[ = \lim_{h \to 0} \frac{- \log_e \left[ - \left( - 1 + h \right) \right]}{- 1 + h + 1}\]
\[ = \lim_{h \to 0} \frac{- \log_e \left( 1 - h \right)}{h}\]
\[ = {- \lim}_{h \to 0} \frac{\log_e \left( 1 - h \right)}{h}\]
\[ = - 1 \times - 1 = 1\]
\[\text { Here, LHD }\neq \text { RHD }\]
\[\text{Therefore, the given function is not differentiable at x} = - 1 .\]
\[ = \lim_{x \to 1^-} \frac{- \log_e \left( x \right) - 0}{x - 1}\]
\[ = \lim_{h \to 0} \frac{- \log_e \left[ \left( 1 - h \right) \right]}{1 - h - 1}\]
\[ = \lim_{h \to 0} \frac{\log_e \left( 1 - h \right)}{h}\]
\[ = - 1\]
\[\left( \text { RHD at x = 1 } \right) = \lim_{x \to 1^+} \frac{f\left( x \right) - f\left( 1 \right)}{x - \left( 1 \right)}\]
\[ = \lim_{x \to 1^+} \frac{\log_e \left( x \right) - 0}{x - 1}\]
\[ = \lim_{h \to 0} \frac{\log_e \left[ \left( 1 + h \right) \right]}{1 + h - 1}\]
\[ = \lim_{h \to 0} \frac{\log_e \left( 1 + h \right)}{h}\]
\[ = 1\]
\[\text { Here, LHD } \neq \text { RHD }\]
\[\text{Therefore, the given function is not differentiable at x} = 1 .\]
APPEARS IN
संबंधित प्रश्न
If 'f' is continuous at x = 0, then find f(0).
`f(x)=(15^x-3^x-5^x+1)/(xtanx) , x!=0`
Let \[f\left( x \right) = \begin{cases}\frac{1 - \cos x}{x^2}, when & x \neq 0 \\ 1 , when & x = 0\end{cases}\] Show that f(x) is discontinuous at x = 0.
Show that
Discuss the continuity of the following functions at the indicated point(s):
(ii) \[f\left( x \right) = \left\{ \begin{array}{l}x^2 \sin\left( \frac{1}{x} \right), & x \neq 0 \\ 0 , & x = 0\end{array}at x = 0 \right.\]
Discuss the continuity of the following functions at the indicated point(s):
Show that
\[f\left( x \right) = \begin{cases}1 + x^2 , if & 0 \leq x \leq 1 \\ 2 - x , if & x > 1\end{cases}\]
Prove that \[f\left( x \right) = \begin{cases}\frac{x - \left| x \right|}{x}, & x \neq 0 \\ 2 , & x = 0\end{cases}\] is discontinuous at x = 0
In the following, determine the value of constant involved in the definition so that the given function is continuou: \[f\left( x \right) = \begin{cases}5 , & \text{ if } & x \leq 2 \\ ax + b, & \text{ if } & 2 < x < 10 \\ 21 , & \text{ if } & x \geq 10\end{cases}\]
If f (x) = | x − a | ϕ (x), where ϕ (x) is continuous function, then
The function \[f\left( x \right) = \frac{x^3 + x^2 - 16x + 20}{x - 2}\] is not defined for x = 2. In order to make f (x) continuous at x = 2, Here f (2) should be defined as
Show that f(x) = |x − 2| is continuous but not differentiable at x = 2.
Show that f(x) = x1/3 is not differentiable at x = 0.
Write an example of a function which is everywhere continuous but fails to differentiable exactly at five points.
Discuss the continuity and differentiability of f (x) = e|x| .
Discuss the continuity and differentiability of
Define differentiability of a function at a point.
If \[f\left( x \right) = \sqrt{1 - \sqrt{1 - x^2}},\text{ then } f \left( x \right)\text { is }\]
Let \[f\left( x \right) = \begin{cases}\frac{1}{\left| x \right|} & for \left| x \right| \geq 1 \\ a x^2 + b & for \left| x \right| < 1\end{cases}\] If f (x) is continuous and differentiable at any point, then
If \[f\left( x \right) = \begin{cases}\frac{1}{1 + e^{1/x}} & , x \neq 0 \\ 0 & , x = 0\end{cases}\] then f (x) is
Let \[f\left( x \right) = \begin{cases}1 , & x \leq - 1 \\ \left| x \right|, & - 1 < x < 1 \\ 0 , & x \geq 1\end{cases}\] Then, f is
Find whether the following function is differentiable at x = 1 and x = 2 or not : \[f\left( x \right) = \begin{cases}x, & & x < 1 \\ 2 - x, & & 1 \leq x \leq 2 \\ - 2 + 3x - x^2 , & & x > 2\end{cases}\] .
Evaluate :`int Sinx/(sqrt(cos^2 x-2 cos x-3)) dx`
If the function f is continuous at = 2, then find f(2) where f(x) = `(x^5 - 32)/(x - 2)`, for ≠ 2.
If y = ( sin x )x , Find `dy/dx`
Discuss the continuity of the function at the point given. If the function is discontinuous, then remove the discontinuity.
f (x) = `(sin^2 5x)/x^2` for x ≠ 0
= 5 for x = 0, at x = 0
If the function f is continuous at x = 2, then find 'k' where
f(x) = `(x^2 + 5)/(x - 1),` for 1< x ≤ 2
= kx + 1 , for x > 2
The function given by f (x) = tanx is discontinuous on the set ______.
For continuity, at x = a, each of `lim_(x -> "a"^+) "f"(x)` and `lim_(x -> "a"^-) "f"(x)` is equal to f(a).
f(x) = `{{:((1 - cos 2x)/x^2",", "if" x ≠ 0),(5",", "if" x = 0):}` at x = 0
f(x) = `{{:(|x|cos 1/x",", "if" x ≠ 0),(0",", "if" x = 0):}` at x = 0
f(x) = `{{:(|x - "a"| sin 1/(x - "a")",", "if" x ≠ 0),(0",", "if" x = "a"):}` at x = a
f(x) = `{{:((sqrt(1 + "k"x) - sqrt(1 - "k"x))/x",", "if" -1 ≤ x < 0),((2x + 1)/(x - 1)",", "if" 0 ≤ x ≤ 1):}` at x = 0
f(x) = `{{:((1 - cos "k"x)/(xsinx)",", "if" x ≠ 0),(1/2",", "if" x = 0):}` at x = 0
Prove that the function f defined by
f(x) = `{{:(x/(|x| + 2x^2)",", x ≠ 0),("k", x = 0):}`
remains discontinuous at x = 0, regardless the choice of k.
Given the function f(x) = `1/(x + 2)`. Find the points of discontinuity of the composite function y = f(f(x))
Examine the differentiability of f, where f is defined by
f(x) = `{{:(1 + x",", "if" x ≤ 2),(5 - x",", "if" x > 2):}` at x = 2
The composition of two continuous function is a continuous function.