मराठी

If F ( X ) = | Log E | X | | - Mathematics

Advertisements
Advertisements

प्रश्न

If \[f\left( x \right) = \left| \log_e |x| \right|\] 

पर्याय

  • f (x) is continuous and differentiable for all x in its domain

  • f (x) is continuous for all for all × in its domain but not differentiable at x = ± 1

  •  (x) is neither continuous nor differentiable at x = ± 1

  • none of these

     

MCQ
थोडक्यात उत्तर

उत्तर

(b) f (x) is continuous for all x in its domain but not differentiable at x = ± 1 

We have, 
\[f\left( x \right) = \left| \log_e |x| \right|\]
\[\text{We know that log function is defined for positive value} . \]
\[\text{Here,} \left| x \right| \text { is positive for all non zero x} . \]
\[\text{Therefore, domain of function is R} - \left\{ 0 \right\}\]

And we know that logarithmic function is continuous in its domain.

\[\text{Therefore, }\left| \log_e \left| x \right| \right| \text { is continuous in its domain} .\]
\[\text{We will check the differentiability at its critical points} . \]
`|log_e |x||| = {(log_e (-x) , -infty <x < -1),(-log_e (-x) ,-1 <x<0),(-log_e (x) ,0<x<1),(log_e(x) ,1<x< infty):}`

\[\left( \text { LHD at x } = - 1 \right) = \lim_{x \to - 1^-} \frac{f\left( x \right) - f\left( - 1 \right)}{x - \left( - 1 \right)}\]
\[ = \lim_{x \to - 1^-} \frac{\log_e \left( - x \right) - 0}{x + 1}\]
\[ = \lim_{h \to 0} \frac{\log_e \left[ - \left( - 1 - h \right) \right]}{- 1 - h + 1}\]
\[ = \lim_{h \to 0} \frac{\log_e \left( 1 + h \right)}{- h}\]
\[ = - 1\]
\[\left( \text { RHD at x } = - 1 \right) = \lim_{x \to - 1^+} \frac{f\left( x \right) - f\left( - 1 \right)}{x - \left( - 1 \right)}\]
\[ = \lim_{x \to - 1^+} \frac{- \log_e \left( - x \right) - 0}{x + 1}\]
\[ = \lim_{h \to 0} \frac{- \log_e \left[ - \left( - 1 + h \right) \right]}{- 1 + h + 1}\]
\[ = \lim_{h \to 0} \frac{- \log_e \left( 1 - h \right)}{h}\]
\[ = {- \lim}_{h \to 0} \frac{\log_e \left( 1 - h \right)}{h}\]
\[ = - 1 \times - 1 = 1\]
\[\text { Here, LHD }\neq \text { RHD }\]
\[\text{Therefore, the given function is not differentiable at x} = - 1 .\]
\[\left( \text { LHD at x } = 1 \right) = \lim_{x \to 1^-} \frac{f\left( x \right) - f\left( 1 \right)}{x - 1}\]
\[ = \lim_{x \to 1^-} \frac{- \log_e \left( x \right) - 0}{x - 1}\]
\[ = \lim_{h \to 0} \frac{- \log_e \left[ \left( 1 - h \right) \right]}{1 - h - 1}\]
\[ = \lim_{h \to 0} \frac{\log_e \left( 1 - h \right)}{h}\]
\[ = - 1\]
\[\left( \text { RHD at x = 1 } \right) = \lim_{x \to 1^+} \frac{f\left( x \right) - f\left( 1 \right)}{x - \left( 1 \right)}\]
\[ = \lim_{x \to 1^+} \frac{\log_e \left( x \right) - 0}{x - 1}\]
\[ = \lim_{h \to 0} \frac{\log_e \left[ \left( 1 + h \right) \right]}{1 + h - 1}\]
\[ = \lim_{h \to 0} \frac{\log_e \left( 1 + h \right)}{h}\]
\[ = 1\]
\[\text { Here, LHD } \neq \text { RHD }\]
\[\text{Therefore, the given function is not differentiable at x} = 1 .\]
Therefore, given function is continuous for all x in its domain but not differentiable at x = ± 1
shaalaa.com
  या प्रश्नात किंवा उत्तरात काही त्रुटी आहे का?
पाठ 10: Differentiability - Exercise 10.4 [पृष्ठ १८]

APPEARS IN

आरडी शर्मा Mathematics [English] Class 12
पाठ 10 Differentiability
Exercise 10.4 | Q 12 | पृष्ठ १८

व्हिडिओ ट्यूटोरियलVIEW ALL [4]

संबंधित प्रश्‍न

 If 'f' is continuous at x = 0, then find f(0).

`f(x)=(15^x-3^x-5^x+1)/(xtanx) , x!=0`


Let \[f\left( x \right) = \begin{cases}\frac{1 - \cos x}{x^2}, when & x \neq 0 \\ 1 , when & x = 0\end{cases}\] Show that f(x) is discontinuous at x = 0.

 

 


Show that 

\[f\left( x \right) = \begin{cases}\frac{\left| x - a \right|}{x - a}, when & x \neq a \\ 1 , when & x = a\end{cases}\] is discontinuous at x = a.

Discuss the continuity of the following functions at the indicated point(s): 

(ii) \[f\left( x \right) = \left\{ \begin{array}{l}x^2 \sin\left( \frac{1}{x} \right), & x \neq 0 \\ 0 , & x = 0\end{array}at x = 0 \right.\]


Discuss the continuity of the following functions at the indicated point(s): 

\[f\left( x \right) = \left\{ \begin{array}{l}\frac{1 - x^n}{1 - x}, & x \neq 1 \\ n - 1 , & x = 1\end{array}n \in N \right.at x = 1\]

Show that 

\[f\left( x \right) = \begin{cases}1 + x^2 , if & 0 \leq x \leq 1 \\ 2 - x , if & x > 1\end{cases}\]


Prove that  \[f\left( x \right) = \begin{cases}\frac{x - \left| x \right|}{x}, & x \neq 0 \\ 2 , & x = 0\end{cases}\] is discontinuous at x = 0

 


In the following, determine the value of constant involved in the definition so that the given function is continuou:  \[f\left( x \right) = \begin{cases}5 , & \text{ if }  & x \leq 2 \\ ax + b, & \text{ if } & 2 < x < 10 \\ 21 , & \text{ if }  & x \geq 10\end{cases}\]


If f (x) = | x − a | ϕ (x), where ϕ (x) is continuous function, then


The function  \[f\left( x \right) = \frac{x^3 + x^2 - 16x + 20}{x - 2}\] is not defined for x = 2. In order to make f (x) continuous at x = 2, Here f (2) should be defined as

 


Show that f(x) = |x − 2| is continuous but not differentiable at x = 2. 


Show that f(x) = x1/3 is not differentiable at x = 0.


Write an example of a function which is everywhere continuous but fails to differentiable exactly at five points.


Discuss the continuity and differentiability of f (x) = e|x| .


Discuss the continuity and differentiability of 

\[f\left( x \right) = \begin{cases}\left( x - c \right) \cos \left( \frac{1}{x - c} \right), & x \neq c \\ 0 , & x = c\end{cases}\]

Define differentiability of a function at a point.

 

If \[f\left( x \right) = \sqrt{1 - \sqrt{1 - x^2}},\text{ then } f \left( x \right)\text {  is }\] 


Let \[f\left( x \right) = \begin{cases}\frac{1}{\left| x \right|} & for \left| x \right| \geq 1 \\ a x^2 + b & for \left| x \right| < 1\end{cases}\] If f (x) is continuous and differentiable at any point, then

 

 

 


If \[f\left( x \right) = \begin{cases}\frac{1}{1 + e^{1/x}} & , x \neq 0 \\ 0 & , x = 0\end{cases}\]  then f (x) is 


Let \[f\left( x \right) = \begin{cases}1 , & x \leq - 1 \\ \left| x \right|, & - 1 < x < 1 \\ 0 , & x \geq 1\end{cases}\] Then, f is 


Find whether the following function is differentiable at x = 1 and x = 2 or not : \[f\left( x \right) = \begin{cases}x, & & x < 1 \\ 2 - x, & & 1 \leq x \leq 2 \\ - 2 + 3x - x^2 , & & x > 2\end{cases}\] .


Evaluate :`int Sinx/(sqrt(cos^2 x-2 cos x-3)) dx`


If the function f is continuous at = 2, then find f(2) where f(x) = `(x^5 - 32)/(x - 2)`, for ≠ 2.


If y = ( sin x )x , Find `dy/dx`


Discuss the continuity of the function at the point given. If the function is discontinuous, then remove the discontinuity.

f (x) = `(sin^2 5x)/x^2` for x ≠ 0 
= 5   for x = 0, at x = 0


If the function f is continuous at x = 2, then find 'k' where

f(x) = `(x^2 + 5)/(x - 1),` for  1< x ≤ 2 
      = kx + 1 , for x > 2


The function given by f (x) = tanx is discontinuous on the set ______.


For continuity, at x = a, each of `lim_(x -> "a"^+) "f"(x)` and `lim_(x -> "a"^-) "f"(x)` is equal to f(a).


f(x) = `{{:((1 - cos 2x)/x^2",", "if"  x ≠ 0),(5",", "if"  x = 0):}` at x = 0


f(x) = `{{:(|x|cos  1/x",", "if"  x ≠ 0),(0",", "if"  x = 0):}` at x = 0


f(x) = `{{:(|x - "a"| sin  1/(x - "a")",",  "if"  x ≠ 0),(0",",  "if"  x = "a"):}` at x = a


f(x) = `{{:((sqrt(1 + "k"x) - sqrt(1 - "k"x))/x",",  "if" -1 ≤ x < 0),((2x + 1)/(x - 1)",",  "if"  0 ≤ x ≤ 1):}` at x = 0


f(x) = `{{:((1 - cos "k"x)/(xsinx)",",   "if"  x ≠ 0),(1/2",",  "if"  x = 0):}` at x = 0


Prove that the function f defined by 
f(x) = `{{:(x/(|x| + 2x^2)",",  x ≠ 0),("k",  x = 0):}`
remains discontinuous at x = 0, regardless the choice of k.


Given the function f(x) = `1/(x + 2)`. Find the points of discontinuity of the composite function y = f(f(x))


Examine the differentiability of f, where f is defined by
f(x) = `{{:(1 + x",",  "if"  x ≤ 2),(5 - x",",  "if"  x > 2):}` at x = 2


The composition of two continuous function is a continuous function.


Share
Notifications

Englishहिंदीमराठी


      Forgot password?
Use app×