मराठी
महाराष्ट्र राज्य शिक्षण मंडळएचएससी वाणिज्य (इंग्रजी माध्यम) इयत्ता १२ वी

Evaluate : ∫ Sin X √ Cos 2 X − 2 Cos X − 3 D X - Mathematics and Statistics

Advertisements
Advertisements

प्रश्न

Evaluate :`int Sinx/(sqrt(cos^2 x-2 cos x-3)) dx`

बेरीज

उत्तर

`"I" = int Sinx/(sqrt(cos^2 x-2 cos x-3)) dx`

Put cos x = t
∴ – sin x dx = dt
sin x dx = – dt 

 =`int (-dt)/sqrt( t^2-2  t-3)` 

=`-int dt/sqrt( t^2-2  t + 1- 1-3)`

=`-int dt /sqrt((t-1)^2-(2)^2`                ....(Completing the square)

=`-log|(t-1)+sqrt((t-1)^2-2^2)|+C`       ....`{int(dx)/sqrt(x^2-a^2)=log|x+sqrt(x^2-a^2)|+"C"}`


=`-log|t-1+sqrt(t^2-2t-3)|+C`


`=– log|(cosx-1)+sqrt(cos^2x-2cosx-3)|+C`

shaalaa.com
  या प्रश्नात किंवा उत्तरात काही त्रुटी आहे का?
2017-2018 (March)

APPEARS IN

व्हिडिओ ट्यूटोरियलVIEW ALL [2]

संबंधित प्रश्‍न

A function f(x) is defined as 

\[f\left( x \right) = \begin{cases}\frac{x^2 - 9}{x - 3}; if & x \neq 3 \\ 6 ; if & x = 3\end{cases}\]

Show that f(x) is continuous at x = 3

 

If \[f\left( x \right) = \begin{cases}e^{1/x} , if & x \neq 0 \\ 1 , if & x = 0\end{cases}\] find whether f is continuous at x = 0.


Discuss the continuity of the following functions at the indicated point(s): 

(i) \[f\left( x \right) = \begin{cases}\left| x \right| \cos\left( \frac{1}{x} \right), & x \neq 0 \\ 0 , & x = 0\end{cases}at x = 0\]

 


If   \[f\left( x \right) = \begin{cases}\frac{2^{x + 2} - 16}{4^x - 16}, \text{ if } & x \neq 2 \\ k , \text{ if }  & x = 2\end{cases}\]  is continuous at x = 2, find k.


In each of the following, find the value of the constant k so that the given function is continuous at the indicated point; \[f\left( x \right) = \binom{\frac{x^3 + x^2 - 16x + 20}{\left( x - 2 \right)^2}, x \neq 2}{k, x = 2}\] 

 


Define continuity of a function at a point.

 

If the function \[f\left( x \right) = \begin{cases}\left( \cos x \right)^{1/x} , & x \neq 0 \\ k , & x = 0\end{cases}\] is continuous at x = 0, then the value of k is


The value of f (0), so that the function 

\[f\left( x \right) = \frac{\sqrt{a^2 - ax + x^2} - \sqrt{a^2 + ax + x^2}}{\sqrt{a + x} - \sqrt{a - x}}\]   becomes continuous for all x, given by

Show that the function f defined as follows, is continuous at x = 2, but not differentiable thereat: 

\[f\left( x \right) = \begin{cases}3x - 2, & 0 < x \leq 1 \\ 2 x^2 - x, & 1 < x \leq 2 \\ 5x - 4, & x > 2\end{cases}\]

Write the number of points where f (x) = |x| + |x − 1| is continuous but not differentiable.


Find whether the following function is differentiable at x = 1 and x = 2 or not : \[f\left( x \right) = \begin{cases}x, & & x < 1 \\ 2 - x, & & 1 \leq x \leq 2 \\ - 2 + 3x - x^2 , & & x > 2\end{cases}\] .


Find k, if f(x) =`log (1+3x)/(5x)` for x ≠ 0

                     = k                    for x = 0

is continuous at x = 0. 


Find the points of discontinuity , if any for the function : f(x) = `(x^2 - 9)/(sinx - 9)`


If f(x) = `(e^(2x) - 1)/(ax)` .                for x < 0 , a ≠ 0
         = 1.                             for x = 0
         = `(log(1 + 7x))/(bx)`.        for x > 0 , b ≠ 0
is continuous at x = 0 . then find a and b


Discuss the continuity of the function `f(x) = (3 - sqrt(2x + 7))/(x - 1)` for x ≠ 1

= `-1/3`   for x = 1, at x = 1


Discuss the continuity of the function f(x) = sin x . cos x.


The number of points at which the function f(x) = `1/(x - [x])` is not continuous is ______.


f(x) = `{{:(3x + 5",", "if"  x ≥ 2),(x^2",", "if"  x < 2):}` at x = 2


Prove that the function f defined by 
f(x) = `{{:(x/(|x| + 2x^2)",",  x ≠ 0),("k",  x = 0):}`
remains discontinuous at x = 0, regardless the choice of k.


If the following function is continuous at x = 2 then the value of k will be ______.

f(x) = `{{:(2x + 1",", if x < 2),(                 k",", if x = 2),(3x - 1",", if x > 2):}`


Share
Notifications

Englishहिंदीमराठी


      Forgot password?
Use app×