मराठी

Let F ( X ) = { 1 − Cos X X 2 , W H E N X ≠ 0 1 , W H E N X = 0 Show that F(X) is Discontinuous at X = 0. - Mathematics

Advertisements
Advertisements

प्रश्न

Let \[f\left( x \right) = \begin{cases}\frac{1 - \cos x}{x^2}, when & x \neq 0 \\ 1 , when & x = 0\end{cases}\] Show that f(x) is discontinuous at x = 0.

 

 

उत्तर

Given: 

\[f\left( x \right) = \binom{\frac{1 - \ cosx}{x^2}, when x \neq 0}{1, when x = 0}\]

Consider:

\[\lim_{x \to 0} f\left( x \right) = \lim_{x \to 0} \left( \frac{1 - \ cosx}{x^2} \right)\]

\[ \Rightarrow \lim_{x \to 0} f\left( x \right) = \lim_{x \to 0} \left( \frac{2 \sin^2 \frac{x}{2}}{x^2} \right)\]

\[ \Rightarrow \lim_{x \to 0} f\left( x \right) = \lim_{x \to 0} \left( \frac{2 \sin^2 \frac{x}{2}}{4\left( \frac{x^2}{4} \right)} \right)\]

\[ \Rightarrow \lim_{x \to 0} f\left( x \right) = \lim_{x \to 0} \left( \frac{2 \left( \sin\frac{x}{2} \right)^2}{4 \left( \frac{x}{2} \right)^2} \right)\]

\[ \Rightarrow \lim_{x \to 0} f\left( x \right) = \frac{2}{4} \lim_{x \to 0} \left( \frac{sin\frac{x}{2}}{\frac{x}{2}} \right)^2 \]

\[ \Rightarrow \lim_{x \to 0} f\left( x \right) = \frac{1}{2} \cdot 1^2 = \frac{1}{2}\]

Given:

\[f\left( 0 \right) = 1\]
\[\lim_{x \to 0} f\left( x \right) \neq f\left( 0 \right)\]

Thus, f(x) is discontinuous at x = 0.

shaalaa.com
  या प्रश्नात किंवा उत्तरात काही त्रुटी आहे का?
पाठ 9: Continuity - Exercise 9.1 [पृष्ठ १७]

APPEARS IN

आरडी शर्मा Mathematics [English] Class 12
पाठ 9 Continuity
Exercise 9.1 | Q 7 | पृष्ठ १७

व्हिडिओ ट्यूटोरियलVIEW ALL [4]

संबंधित प्रश्‍न

If f(x)= `{((sin(a+1)x+2sinx)/x,x<0),(2,x=0),((sqrt(1+bx)-1)/x,x>0):}`

is continuous at x = 0, then find the values of a and b.


Examine the following function for continuity:

`f(x) = (x^2 - 25)/(x + 5), x != -5`


Discuss the continuity of the function f, where f is defined by `f(x) = {(2x , ","if x < 0),(0, "," if 0 <= x <= 1),(4x, "," if x > 1):}`


A function f(x) is defined as 

\[f\left( x \right) = \begin{cases}\frac{x^2 - 9}{x - 3}; if & x \neq 3 \\ 6 ; if & x = 3\end{cases}\]

Show that f(x) is continuous at x = 3

 

If \[f\left( x \right) = \begin{cases}e^{1/x} , if & x \neq 0 \\ 1 , if & x = 0\end{cases}\] find whether f is continuous at x = 0.


Show that

\[f\left( x \right)\] = \begin{cases}\frac{x - \left| x \right|}{2}, when & x \neq 0 \\ 2 , when & x = 0\end{cases}

is discontinuous at x = 0.

 

Show that 

\[f\left( x \right) = \begin{cases}\frac{\left| x - a \right|}{x - a}, when & x \neq a \\ 1 , when & x = a\end{cases}\] is discontinuous at x = a.

Discuss the continuity of the function f(x) at the point x = 1/2, where \[f\left( x \right) = \begin{cases}x, 0 \leq x < \frac{1}{2} \\ \frac{1}{2}, x = \frac{1}{2} \\ 1 - x, \frac{1}{2} < x \leq 1\end{cases}\] 


Find the value of k for which \[f\left( x \right) = \begin{cases}\frac{1 - \cos 4x}{8 x^2}, \text{ when}  & x \neq 0 \\ k ,\text{ when }  & x = 0\end{cases}\] is continuous at x = 0;

 


In each of the following, find the value of the constant k so that the given function is continuous at the indicated point;  

\[f\left( x \right) = \begin{cases}k( x^2 - 2x), \text{ if }  & x < 0 \\ \cos x, \text{ if }  & x \geq 0\end{cases}\] at x = 0

In each of the following, find the value of the constant k so that the given function is continuous at the indicated point;  \[f\left( x \right) = \begin{cases}\frac{x^2 - 25}{x - 5}, & x \neq 5 \\ k , & x = 5\end{cases}\]at x = 5


Let\[f\left( x \right) = \left\{ \begin{array}\frac{1 - \sin^3 x}{3 \cos^2 x} , & \text{ if }  x < \frac{\pi}{2} \\ a , & \text{ if }  x = \frac{\pi}{2} \\ \frac{b(1 - \sin x)}{(\pi - 2x )^2}, & \text{ if }  x > \frac{\pi}{2}\end{array} . \right.\] ]If f(x) is continuous at x = \[\frac{\pi}{2}\] , find a and b.

 

Find the points of discontinuity, if any, of the following functions: 

\[f\left( x \right) = \begin{cases}\frac{e^x - 1}{\log_e (1 + 2x)}, & \text{ if }x \neq 0 \\ 7 , & \text{ if } x = 0\end{cases}\]

If  \[f\left( x \right) = \begin{cases}\frac{{36}^x - 9^x - 4^x + 1}{\sqrt{2} - \sqrt{1 + \cos x}}, & x \neq 0 \\ k , & x = 0\end{cases}\]is continuous at x = 0, then k equals

 


The value of k which makes \[f\left( x \right) = \begin{cases}\sin\frac{1}{x}, & x \neq 0 \\ k , & x = 0\end{cases}\]    continuous at x = 0, is

 


The points of discontinuity of the function\[f\left( x \right) = \begin{cases}\frac{1}{5}\left( 2 x^2 + 3 \right) , & x \leq 1 \\ 6 - 5x , & 1 < x < 3 \\ x - 3 , & x \geq 3\end{cases}\text{ is } \left( are \right)\]  


Show that \[f\left( x \right) =\]`{(12x, -,13, if , x≤3),(2x^2, +,5, if x,>3):}` is differentiable at x = 3. Also, find f'(3).


Show that the function 

\[f\left( x \right) = \begin{cases}\left| 2x - 3 \right| \left[ x \right], & x \geq 1 \\ \sin \left( \frac{\pi x}{2} \right), & x < 1\end{cases}\] is continuous but not differentiable at x = 1.


Discuss the continuity and differentiability of f (x) = |log |x||.


Discuss the continuity and differentiability of 

\[f\left( x \right) = \begin{cases}\left( x - c \right) \cos \left( \frac{1}{x - c} \right), & x \neq c \\ 0 , & x = c\end{cases}\]

If f (x) is differentiable at x = c, then write the value of 

\[\lim_{x \to c} f \left( x \right)\]

Write the points of non-differentiability of 

\[f \left( x \right) = \left| \log \left| x \right| \right| .\]

The function f (x) =  |cos x| is


If f (x) = |3 − x| + (3 + x), where (x) denotes the least integer greater than or equal to x, then f (x) is


Let \[f\left( x \right) = \begin{cases}1 , & x \leq - 1 \\ \left| x \right|, & - 1 < x < 1 \\ 0 , & x \geq 1\end{cases}\] Then, f is 


Discuss the continuity of the function f at x = 0

If f(x) = `(2^(3x) - 1)/tanx`, for x ≠ 0

         = 1,   for x = 0


 If the function f is continuous at x = I, then find f(1), where f(x) = `(x^2 - 3x + 2)/(x - 1),` for x ≠ 1


If the function
f(x) = x2 + ax + b,         x < 2

      = 3x + 2,                 2≤ x ≤ 4

      = 2ax + 5b,             4 < x

is continuous at x = 2 and x = 4, then find the values of a and b


Discuss the continuity of the function f at x = 0, where
f(x) = `(5^x + 5^-x - 2)/(cos2x - cos6x),` for x ≠ 0
      = `1/8(log 5)^2,`  for x = 0


Find the value of the constant k so that the function f defined below is continuous at x = 0, where f(x) = `{{:((1 - cos4x)/(8x^2)",", x ≠ 0),("k"",", x = 0):}`


If f(x) = `{{:((x^3 + x^2 - 16x + 20)/(x - 2)^2",", x ≠ 2),("k"",", x = 2):}` is continuous at x = 2, find the value of k.


Show that the function f given by f(x) = `{{:(("e"^(1/x) - 1)/("e"^(1/x) + 1)",", "if"  x ≠ 0),(0",",  "if"  x = 0):}` is discontinuous at x = 0.


Let f(x) = `{{:((1 - cos 4x)/x^2",",  "if"  x < 0),("a"",",  "if"  x = 0),(sqrt(x)/(sqrt(16) + sqrt(x) - 4)",", "if"  x > 0):}`. For what value of a, f is continuous at x = 0?


The function f(x) = |x| + |x – 1| is ______.


The number of points at which the function f(x) = `1/(log|x|)` is discontinuous is ______.


f(x) = |x| + |x − 1| at x = 1


Examine the differentiability of f, where f is defined by
f(x) = `{{:(x[x]",",  "if"  0 ≤ x < 2),((x - 1)x",",  "if"  2 ≤ x < 3):}` at x = 2


If f(x) = `x^2 sin  1/x` where x ≠ 0, then the value of the function f at x = 0, so that the function is continuous at x = 0, is ______.


The composition of two continuous function is a continuous function.


`lim_("x" -> "x" //4) ("cos x - sin x")/("x"- "x" /4)`  is equal to ____________.


Share
Notifications

Englishहिंदीमराठी


      Forgot password?
Use app×