Advertisements
Advertisements
प्रश्न
Discuss the continuity and differentiability of f (x) = |log |x||.
उत्तर
We have,
f (x) = |log |x||
`|x| = {(-x, ,-∞ <x<-1),(-x, ,-1<x<0),(x, ,0<x<1),(x, ,1<x<∞):}`
log `|x| = {(log(-x), ,-∞ <x<-1),(log(-x), ,-1<x<0),(log(x), ,0<x<1),(log(x), ,1<x<∞):}`
`|log |x|| = {(log(-x), ,-∞ <x<-1),(-log(-x), ,-1<x<0),(-log(x), ,0<x<1),(log(x), ,1<x<∞):}`
\[\left( \text { LHD at x } = - 1 \right) = \lim_{x \to - 1^-} \frac{f\left( x \right) - f\left( - 1 \right)}{x + 1}\]
\[ = \lim_{x \to - 1^-} \frac{\log \left( - x \right) - 0}{x + 1}\]
\[ = \lim_{h \to 0} \frac{\log \left( 1 + h \right)}{- 1 - h + 1}\]
\[ = - \lim_{h \to 0} \frac{\log \left( 1 + h \right)}{h} = - 1\]
\[\left( \text { RHD at x } = - 1 \right) = \lim_{x \to - 1^+} \frac{f\left( x \right) - f\left( - 1 \right)}{x + 1}\]
\[ = \lim_{x \to - 1^+} \frac{- \log \left( - x \right) - 0}{x + 1}\]
\[ = \lim_{h \to 0} \frac{- \log \left( 1 - h \right)}{- 1 + h + 1}\]
\[ = \lim_{h \to 0} \frac{- \log \left( 1 - h \right)}{h} = 1\]
Here, LHD ≠ RHD
So, function is not differentiable at x = − 1
At 0 function is not defined.
\[\left( \text { LHD at x } = 1 \right) = \lim_{x \to 1^-} \frac{f\left( x \right) - f\left( 1 \right)}{x - 1}\]
\[ = \lim_{x \to 1^-} \frac{- \log \left( x \right) - 0}{x - 1}\]
\[ = \lim_{h \to 0} \frac{- \log \left( 1 - h \right)}{1 - h - 1}\]
\[ = - \lim_{h \to 0} \frac{\log \left( 1 - h \right)}{h} = - 1\]
\[\left( \text { RHD at x } = 1 \right) = \lim_{x \to 1^+} \frac{f\left( x \right) - f\left( 1 \right)}{x - 1}\]
\[ = \lim_{x \to 1^+} \frac{\log \left( x \right) - 0}{x - 1}\]
\[ = \lim_{h \to 0} \frac{\log \left( 1 + h \right)}{1 + h - 1}\]
\[ = \lim_{h \to 0} \frac{\log \left( 1 + h \right)}{h} = 1\]
Here, LHD ≠ RHD
So, function is not differentiable at x = 1
Hence, function is not differentiable at x = 0 and ± 1
At 0 function is not defined.
So, at 0 function is not continuous.
\[\left(\text { LHL at x } = - 1 \right) = \lim_{x \to - 1^-} f\left( x \right)\]
\[ = \lim_{x \to - 1^-} \log \left( - x \right)\]
\[ = \log \left( 1 \right) = 0\]
\[\left( \text { RHL at x } = - 1 \right) = \lim_{x \to - 1^+} f\left( x \right)\]
\[ = \lim_{x \to - 1^+} - \log \left( - x \right)\]
\[ = - \log 1 = 0\]
\[f\left( - 1 \right) = 0\]
\[\text { Therefore,} f\left( x \right) = \left| \log \left| x \right| \right| \text{is continuous at x} = - 1\]
\[\left( \text { LHL at x } = 1 \right) = \lim_{x \to 1^-} f\left( x \right)\]
\[ = \lim_{x \to 1^-} - \log \left( x \right)\]
\[ = - \log \left( 1 \right) = 0\]
\[\left( \text { RHL at x } = 1 \right) = \lim_{x \to 1^+} f\left( x \right)\]
\[ = \lim_{x \to 1^+} \log \left( x \right)\]
\[ = \log 1 = 0\]
\[f\left( 1 \right) = 0\]
\[\text { Therefore, at x } = 1, f\left( x \right) = \left| \log \left| x \right| \right|\text { is continuous .}\]
Hence, function f (x) = |log |x|| is not continuous at x = 0
APPEARS IN
संबंधित प्रश्न
Determine the values of a, b, c for which the function f(x) = `{((sin(a + 1)x + sin x)/x, "for" x < 0),(x, "for" x = 0),((sqrt(x + bx^2) - sqrtx)/(bx^(3"/"2)), "for" x > 0):}` is continuous at x = 0.
Find the value of k for which \[f\left( x \right) = \begin{cases}\frac{1 - \cos 4x}{8 x^2}, \text{ when} & x \neq 0 \\ k ,\text{ when } & x = 0\end{cases}\] is continuous at x = 0;
In each of the following, find the value of the constant k so that the given function is continuous at the indicated point; \[f\left( x \right) = \binom{\frac{x^3 + x^2 - 16x + 20}{\left( x - 2 \right)^2}, x \neq 2}{k, x = 2}\]
Discuss the continuity of the function \[f\left( x \right) = \begin{cases}2x - 1 , & \text { if } x < 2 \\ \frac{3x}{2} , & \text{ if } x \geq 2\end{cases}\]
If \[f\left( x \right) = \begin{cases}\frac{x^2 - 16}{x - 4}, & \text{ if } x \neq 4 \\ k , & \text{ if } x = 4\end{cases}\] is continuous at x = 4, find k.
Let f (x) = | x | + | x − 1|, then
If \[f\left( x \right) = \left\{ \begin{array}a x^2 + b , & 0 \leq x < 1 \\ 4 , & x = 1 \\ x + 3 , & 1 < x \leq 2\end{array}, \right.\] then the value of (a, b) for which f (x) cannot be continuous at x = 1, is
The value of k which makes \[f\left( x \right) = \begin{cases}\sin\frac{1}{x}, & x \neq 0 \\ k , & x = 0\end{cases}\] continuous at x = 0, is
Show that f(x) = |x − 2| is continuous but not differentiable at x = 2.
Show that \[f\left( x \right) =\]`{(12x, -,13, if , x≤3),(2x^2, +,5, if x,>3):}` is differentiable at x = 3. Also, find f'(3).
Show that the function
\[f\left( x \right) = \begin{cases}\left| 2x - 3 \right| \left[ x \right], & x \geq 1 \\ \sin \left( \frac{\pi x}{2} \right), & x < 1\end{cases}\] is continuous but not differentiable at x = 1.
If f is defined by f (x) = x2, find f'(2).
Write an example of a function which is everywhere continuous but fails to differentiable exactly at five points.
Discuss the continuity and differentiability of f (x) = e|x| .
Discuss the continuity and differentiability of
Is every continuous function differentiable?
Write the points where f (x) = |loge x| is not differentiable.
The function f (x) = sin−1 (cos x) is
The set of points where the function f (x) = x |x| is differentiable is
If \[f\left( x \right) = \sqrt{1 - \sqrt{1 - x^2}},\text{ then } f \left( x \right)\text { is }\]
If \[f\left( x \right) = \left| \log_e x \right|, \text { then}\]
Let \[f\left( x \right) = \begin{cases}\frac{1}{\left| x \right|} & for \left| x \right| \geq 1 \\ a x^2 + b & for \left| x \right| < 1\end{cases}\] If f (x) is continuous and differentiable at any point, then
Let f (x) = |sin x|. Then,
Let \[f\left( x \right) = \begin{cases}1 , & x \leq - 1 \\ \left| x \right|, & - 1 < x < 1 \\ 0 , & x \geq 1\end{cases}\] Then, f is
Examine the continuity of the following function :
f(x) = x2 - x + 9, for x ≤ 3
= 4x + 3, for x > 3
at x = 3.
If f (x) = `(1 - "sin x")/(pi - "2x")^2` , for x ≠ `pi/2` is continuous at x = `pi/4` , then find `"f"(pi/2) .`
The probability distribution function of continuous random variable X is given by
f( x ) = `x/4`, 0 < x < 2
= 0, Otherwise
Find P( x ≤ 1)
If the function f is continuous at x = I, then find f(1), where f(x) = `(x^2 - 3x + 2)/(x - 1),` for x ≠ 1
If f(x) = `{{:((x^3 + x^2 - 16x + 20)/(x - 2)^2",", x ≠ 2),("k"",", x = 2):}` is continuous at x = 2, find the value of k.
Let f(x) = `{{:((1 - cos 4x)/x^2",", "if" x < 0),("a"",", "if" x = 0),(sqrt(x)/(sqrt(16) + sqrt(x) - 4)",", "if" x > 0):}`. For what value of a, f is continuous at x = 0?
The function given by f (x) = tanx is discontinuous on the set ______.
The value of k which makes the function defined by f(x) = `{{:(sin 1/x",", "if" x ≠ 0),("k"",", "if" x = 0):}`, continuous at x = 0 is ______.
f(x) = `{{:(|x - "a"| sin 1/(x - "a")",", "if" x ≠ 0),(0",", "if" x = "a"):}` at x = a
f(x) = `{{:(3x - 8",", "if" x ≤ 5),(2"k"",", "if" x > 5):}` at x = 5
Prove that the function f defined by
f(x) = `{{:(x/(|x| + 2x^2)",", x ≠ 0),("k", x = 0):}`
remains discontinuous at x = 0, regardless the choice of k.
Find the values of a and b such that the function f defined by
f(x) = `{{:((x - 4)/(|x - 4|) + "a"",", "if" x < 4),("a" + "b"",", "if" x = 4),((x - 4)/(|x - 4|) + "b"",", "if" x > 4):}`
is a continuous function at x = 4.
Examine the differentiability of f, where f is defined by
f(x) = `{{:(x[x]",", "if" 0 ≤ x < 2),((x - 1)x",", "if" 2 ≤ x < 3):}` at x = 2
Show that f(x) = |x – 5| is continuous but not differentiable at x = 5.
`lim_("x" -> 0) (2 "sin x - sin" 2 "x")/"x"^3` is equal to ____________.