Advertisements
Advertisements
Question
Discuss the continuity and differentiability of f (x) = |log |x||.
Solution
We have,
f (x) = |log |x||
`|x| = {(-x, ,-∞ <x<-1),(-x, ,-1<x<0),(x, ,0<x<1),(x, ,1<x<∞):}`
log `|x| = {(log(-x), ,-∞ <x<-1),(log(-x), ,-1<x<0),(log(x), ,0<x<1),(log(x), ,1<x<∞):}`
`|log |x|| = {(log(-x), ,-∞ <x<-1),(-log(-x), ,-1<x<0),(-log(x), ,0<x<1),(log(x), ,1<x<∞):}`
\[\left( \text { LHD at x } = - 1 \right) = \lim_{x \to - 1^-} \frac{f\left( x \right) - f\left( - 1 \right)}{x + 1}\]
\[ = \lim_{x \to - 1^-} \frac{\log \left( - x \right) - 0}{x + 1}\]
\[ = \lim_{h \to 0} \frac{\log \left( 1 + h \right)}{- 1 - h + 1}\]
\[ = - \lim_{h \to 0} \frac{\log \left( 1 + h \right)}{h} = - 1\]
\[\left( \text { RHD at x } = - 1 \right) = \lim_{x \to - 1^+} \frac{f\left( x \right) - f\left( - 1 \right)}{x + 1}\]
\[ = \lim_{x \to - 1^+} \frac{- \log \left( - x \right) - 0}{x + 1}\]
\[ = \lim_{h \to 0} \frac{- \log \left( 1 - h \right)}{- 1 + h + 1}\]
\[ = \lim_{h \to 0} \frac{- \log \left( 1 - h \right)}{h} = 1\]
Here, LHD ≠ RHD
So, function is not differentiable at x = − 1
At 0 function is not defined.
\[\left( \text { LHD at x } = 1 \right) = \lim_{x \to 1^-} \frac{f\left( x \right) - f\left( 1 \right)}{x - 1}\]
\[ = \lim_{x \to 1^-} \frac{- \log \left( x \right) - 0}{x - 1}\]
\[ = \lim_{h \to 0} \frac{- \log \left( 1 - h \right)}{1 - h - 1}\]
\[ = - \lim_{h \to 0} \frac{\log \left( 1 - h \right)}{h} = - 1\]
\[\left( \text { RHD at x } = 1 \right) = \lim_{x \to 1^+} \frac{f\left( x \right) - f\left( 1 \right)}{x - 1}\]
\[ = \lim_{x \to 1^+} \frac{\log \left( x \right) - 0}{x - 1}\]
\[ = \lim_{h \to 0} \frac{\log \left( 1 + h \right)}{1 + h - 1}\]
\[ = \lim_{h \to 0} \frac{\log \left( 1 + h \right)}{h} = 1\]
Here, LHD ≠ RHD
So, function is not differentiable at x = 1
Hence, function is not differentiable at x = 0 and ± 1
At 0 function is not defined.
So, at 0 function is not continuous.
\[\left(\text { LHL at x } = - 1 \right) = \lim_{x \to - 1^-} f\left( x \right)\]
\[ = \lim_{x \to - 1^-} \log \left( - x \right)\]
\[ = \log \left( 1 \right) = 0\]
\[\left( \text { RHL at x } = - 1 \right) = \lim_{x \to - 1^+} f\left( x \right)\]
\[ = \lim_{x \to - 1^+} - \log \left( - x \right)\]
\[ = - \log 1 = 0\]
\[f\left( - 1 \right) = 0\]
\[\text { Therefore,} f\left( x \right) = \left| \log \left| x \right| \right| \text{is continuous at x} = - 1\]
\[\left( \text { LHL at x } = 1 \right) = \lim_{x \to 1^-} f\left( x \right)\]
\[ = \lim_{x \to 1^-} - \log \left( x \right)\]
\[ = - \log \left( 1 \right) = 0\]
\[\left( \text { RHL at x } = 1 \right) = \lim_{x \to 1^+} f\left( x \right)\]
\[ = \lim_{x \to 1^+} \log \left( x \right)\]
\[ = \log 1 = 0\]
\[f\left( 1 \right) = 0\]
\[\text { Therefore, at x } = 1, f\left( x \right) = \left| \log \left| x \right| \right|\text { is continuous .}\]
Hence, function f (x) = |log |x|| is not continuous at x = 0
APPEARS IN
RELATED QUESTIONS
Examine the following function for continuity:
f (x) = x – 5
Discuss the continuity of the function f, where f is defined by `f(x) = {(3, ","if 0 <= x <= 1),(4, ","if 1 < x < 3),(5, ","if 3 <= x <= 10):}`
A function f(x) is defined as
Show that f(x) is continuous at x = 3
Show that
is discontinuous at x = 0.
Discuss the continuity of the following functions at the indicated point(s):
Discuss the continuity of the following functions at the indicated point(s):
Determine the value of the constant k so that the function
\[f\left( x \right) = \left\{ \begin{array}{l}\frac{x^2 - 3x + 2}{x - 1}, if & x \neq 1 \\ k , if & x = 1\end{array}\text{is continuous at x} = 1 \right.\]
For what value of k is the function
\[f\left( x \right) = \begin{cases}\frac{\sin 5x}{3x}, if & x \neq 0 \\ k , if & x = 0\end{cases}\text{is continuous at x} = 0?\]
In each of the following, find the value of the constant k so that the given function is continuous at the indicated point;
In each of the following, find the value of the constant k so that the given function is continuous at the indicated point; \[f\left( x \right) = \begin{cases}k x^2 , & x \geq 1 \\ 4 , & x < 1\end{cases}\]at x = 1
Discuss the continuity of the f(x) at the indicated points: f(x) = | x − 1 | + | x + 1 | at x = −1, 1.
For what value of k is the following function continuous at x = 2?
Let\[f\left( x \right) = \left\{ \begin{array}\frac{1 - \sin^3 x}{3 \cos^2 x} , & \text{ if } x < \frac{\pi}{2} \\ a , & \text{ if } x = \frac{\pi}{2} \\ \frac{b(1 - \sin x)}{(\pi - 2x )^2}, & \text{ if } x > \frac{\pi}{2}\end{array} . \right.\] ]If f(x) is continuous at x = \[\frac{\pi}{2}\] , find a and b.
If the functions f(x), defined below is continuous at x = 0, find the value of k. \[f\left( x \right) = \begin{cases}\frac{1 - \cos 2x}{2 x^2}, & x < 0 \\ k , & x = 0 \\ \frac{x}{\left| x \right|} , & x > 0\end{cases}\]
Find the points of discontinuity, if any, of the following functions: \[f\left( x \right) = \begin{cases}\left| x - 3 \right|, & \text{ if } x \geq 1 \\ \frac{x^2}{4} - \frac{3x}{2} + \frac{13}{4}, & \text{ if } x < 1\end{cases}\]
In the following, determine the value of constant involved in the definition so that the given function is continuou: \[f\left( x \right) = \begin{cases}\frac{\sqrt{1 + px} - \sqrt{1 - px}}{x}, & \text{ if } - 1 \leq x < 0 \\ \frac{2x + 1}{x - 2} , & \text{ if } 0 \leq x \leq 1\end{cases}\]
In the following, determine the value of constant involved in the definition so that the given function is continuou: \[f\left( x \right) = \begin{cases}5 , & \text{ if } & x \leq 2 \\ ax + b, & \text{ if } & 2 < x < 10 \\ 21 , & \text{ if } & x \geq 10\end{cases}\]
If \[f\left( x \right) = \begin{cases}\frac{x^2 - 16}{x - 4}, & \text{ if } x \neq 4 \\ k , & \text{ if } x = 4\end{cases}\] is continuous at x = 4, find k.
If f (x) = | x − a | ϕ (x), where ϕ (x) is continuous function, then
If \[f\left( x \right) = \left| \log_{10} x \right|\] then at x = 1
Let f (x) = | x | + | x − 1|, then
Write the points of non-differentiability of
If \[f\left( x \right) = \begin{cases}\frac{1}{1 + e^{1/x}} & , x \neq 0 \\ 0 & , x = 0\end{cases}\] then f (x) is
The set of points where the function f (x) given by f (x) = |x − 3| cos x is differentiable, is
Find whether the following function is differentiable at x = 1 and x = 2 or not : \[f\left( x \right) = \begin{cases}x, & & x < 1 \\ 2 - x, & & 1 \leq x \leq 2 \\ - 2 + 3x - x^2 , & & x > 2\end{cases}\] .
Find the value of k for which the function f (x ) = \[\binom{\frac{x^2 + 3x - 10}{x - 2}, x \neq 2}{ k , x^2 }\] is continuous at x = 2 .
If the function f is continuous at = 2, then find f(2) where f(x) = `(x^5 - 32)/(x - 2)`, for ≠ 2.
If the function f is continuous at x = 0
Where f(x) = 2`sqrt(x^3 + 1)` + a, for x < 0,
= `x^3 + a + b, for x > 0
and f (1) = 2, then find a and b.
Find the value of 'k' if the function
f(x) = `(tan 7x)/(2x)`, for x ≠ 0.
= k for x = 0.
is continuous at x = 0.
Find `dy/dx if y = tan^-1 ((6x)/[ 1 - 5x^2])`
The number of points at which the function f(x) = `1/(x - [x])` is not continuous is ______.
f(x) = `{{:(3x - 8",", "if" x ≤ 5),(2"k"",", "if" x > 5):}` at x = 5
f(x) = `{{:((sqrt(1 + "k"x) - sqrt(1 - "k"x))/x",", "if" -1 ≤ x < 0),((2x + 1)/(x - 1)",", "if" 0 ≤ x ≤ 1):}` at x = 0
Find the values of p and q so that f(x) = `{{:(x^2 + 3x + "p"",", "if" x ≤ 1),("q"x + 2",", "if" x > 1):}` is differentiable at x = 1
If f is continuous on its domain D, then |f| is also continuous on D.
`lim_("x" -> 0) (2 "sin x - sin" 2 "x")/"x"^3` is equal to ____________.
The value of k (k < 0) for which the function f defined as
f(x) = `{((1-cos"kx")/("x"sin"x")"," "x" ≠ 0),(1/2"," "x" = 0):}`
is continuous at x = 0 is: