Advertisements
Advertisements
प्रश्न
Let f (x) = |sin x|. Then,
पर्याय
f (x) is everywhere differentiable.
f (x) is everywhere continuous but not differentiable at x = n π, n ∈ Z
f (x) is everywhere continuous but not differentiable at \[x = \left( 2n + 1 \right)\frac{\pi}{2}, n \in Z\]
none of these
उत्तर
(b) f (x) is everywhere continuous but not differentiable at x = nπ, n ∈ Z We have,
\[f\left( x \right) = \left| \sin x \right|\]
`⇒ f(x) = {(0, x = 2npi),(sin x ,2npi<x< (2n +1)pi),(0, x = (2n +1)pi),(-sin x, (2n +1)pi <x <(2n + 2)pi):}`
\[\text{When, x is in first or second quadrant}, i . e . , 2n\pi < x < \left( 2n + 1 \right)\pi , we have\]
\[ f\left( x \right) = \text{sin x which being a trigonometrical function is continuous and differentiable in} \left( 2n\pi, \left( 2n + 1 \right)\pi \right)\]
\[\text{When, x is in third or fourth quadrant}, i . e . , \left( 2n + 1 \right)\pi < x < \left( 2n + 2 \right)\pi , we have\]
\[ f\left( x \right) = - \text{sin x which being a trigonometrical function is continuous and differentiable in} \left( \left( 2n + 1 \right)\pi, \left( 2n + 2 \right)\pi \right)\]
\[\text{Thus possible point of non - differentiability of } f\left( x \right) \text { are x = 2n}\pi \text { and } \left( 2n + 1 \right)\pi\]
\[\text { Now, LHD } \left[\text { at x = 2n }\pi \right] = \lim_{x \to 2n \pi^-} \frac{f\left( x \right) - f\left( 2n\pi \right)}{x - 2n\pi}\]
\[ = \lim_{x \to 2n \pi^-} \frac{- \sin x - 0}{x - 2n\pi}\]
\[ = \lim_{x \to 2n \pi^-} \frac{- \cos x}{1 - 0} \left[\text { By L'Hospital rule } \right]\]
\[ = - 1\]
\[\text { And RHD } \left( at x = 2n\pi \right) = \lim_{x \to 2n \pi^+} \frac{f\left( x \right) - f\left( 2n\pi \right)}{x - 2n\pi}\]
\[ = \lim_{x \to 2n \pi^+} \frac{\sin x - 0}{x - 2n\pi}\]
\[ = \lim_{x \to 2n \pi^+} \frac{\cos x}{1 - 0} \left[ \text { By L'Hospital rule } \right]\]
\[ = 1\]
\[ \therefore \lim_{x \to 2n \pi^-} f\left( x \right) \neq \lim_{x \to 2n \pi^+} f\left( x \right)\]
\[\text { So }f\left( x \right) \text { is not differentiable at x = 2n }\pi\]
\[\text { Now, LHD } \left[ at x = \left( 2n + 1 \right)\pi \right] = \lim_{x \to \left( 2n + 1 \right) \pi^-} \frac{f\left( x \right) - f\left( \left( 2n + 1 \right)\pi \right)}{x - \left( 2n + 1 \right)\pi}\]
\[ = \lim_{x \to \left( 2n + 1 \right) \pi^-} \frac{\sin x - 0}{x - \left( 2n + 1 \right)\pi}\]
\[ = \lim_{x \to \left( 2n + 1 \right) \pi^-} \frac{\cos x}{1 - 0} \left[ \text { By L'Hospital rule } \right]\]
\[ = - 1\]
\[\text { And RHD } \left( at x = \left( 2n + 1 \right)\pi \right) = \lim_{x \to \left( 2n + 1 \right) \pi^+} \frac{f\left( x \right) - f\left( \left( 2n + 1 \right)\pi \right)}{x - \left( 2n + 1 \right)\pi}\]
\[ = \lim_{x \to \left( 2n + 1 \right) \pi^+} \frac{- \sin x - 0}{x - \left( 2n + 1 \right)\pi}\]
\[ = \lim_{x \to \left( 2n + 1 \right) \pi^+} \frac{- \cos x}{1 - 0} \left[ \text { By L'Hospital rule }\right]\]
\[ = 1\]
\[ \text { therefore } \lim_{x \to \left( 2n + 1 \right) \pi^-} f\left( x \right) \neq \lim_{x \to \left( 2n + 1 \right) \pi^+} f\left( x \right)\]
\[\text { So }f\left( x \right) \text{is not differentiable at} x = \left( 2n + 1 \right)\pi\]
\[\text{Therefore, }f\left( x \right) \text { is neither differentiable at} 2n\pi \text { nor at} \left( 2n + 1 \right)\pi\]
\[i . e . f\left( x \right) \text{is neither differentiable at even multiple of} \pi\text { nor at odd multiple of} \pi\]
\[i . e . f\left( x \right) \text{is not differentiable at x} = n\pi\]
\[\text{Therefore, f(x) is everywhere continuous but not differentiable at} n\pi .\]
APPEARS IN
संबंधित प्रश्न
If \[f\left( x \right) = \begin{cases}\frac{x^2 - 1}{x - 1}; for & x \neq 1 \\ 2 ; for & x = 1\end{cases}\] Find whether f(x) is continuous at x = 1.
Let \[f\left( x \right) = \begin{cases}\frac{1 - \cos x}{x^2}, when & x \neq 0 \\ 1 , when & x = 0\end{cases}\] Show that f(x) is discontinuous at x = 0.
Discuss the continuity of the following functions at the indicated point(s): (iv) \[f\left( x \right) = \left\{ \begin{array}{l}\frac{e^x - 1}{\log(1 + 2x)}, if & x \neq a \\ 7 , if & x = 0\end{array}at x = 0 \right.\]
Discuss the continuity of the function f(x) at the point x = 1/2, where \[f\left( x \right) = \begin{cases}x, 0 \leq x < \frac{1}{2} \\ \frac{1}{2}, x = \frac{1}{2} \\ 1 - x, \frac{1}{2} < x \leq 1\end{cases}\]
For what value of k is the following function continuous at x = 1? \[f\left( x \right) = \begin{cases}\frac{x^2 - 1}{x - 1}, & x \neq 1 \\ k , & x = 1\end{cases}\]
For what value of k is the function
\[f\left( x \right) = \begin{cases}\frac{\sin 5x}{3x}, if & x \neq 0 \\ k , if & x = 0\end{cases}\text{is continuous at x} = 0?\]
In each of the following, find the value of the constant k so that the given function is continuous at the indicated point; \[f\left( x \right) = \begin{cases}\frac{x^2 - 25}{x - 5}, & x \neq 5 \\ k , & x = 5\end{cases}\]at x = 5
Prove that \[f\left( x \right) = \begin{cases}\frac{x - \left| x \right|}{x}, & x \neq 0 \\ 2 , & x = 0\end{cases}\] is discontinuous at x = 0
In the following, determine the value of constant involved in the definition so that the given function is continuou: \[f\left( x \right) = \begin{cases}5 , & \text{ if } & x \leq 2 \\ ax + b, & \text{ if } & 2 < x < 10 \\ 21 , & \text{ if } & x \geq 10\end{cases}\]
Discuss the continuity of the function \[f\left( x \right) = \begin{cases}2x - 1 , & \text { if } x < 2 \\ \frac{3x}{2} , & \text{ if } x \geq 2\end{cases}\]
Find all point of discontinuity of the function
Define continuity of a function at a point.
The value of f (0), so that the function
If \[f\left( x \right) = \left\{ \begin{array}a x^2 + b , & 0 \leq x < 1 \\ 4 , & x = 1 \\ x + 3 , & 1 < x \leq 2\end{array}, \right.\] then the value of (a, b) for which f (x) cannot be continuous at x = 1, is
Show that \[f\left( x \right) =\]`{(12x, -,13, if , x≤3),(2x^2, +,5, if x,>3):}` is differentiable at x = 3. Also, find f'(3).
Show that the function
\[f\left( x \right) = \begin{cases}\left| 2x - 3 \right| \left[ x \right], & x \geq 1 \\ \sin \left( \frac{\pi x}{2} \right), & x < 1\end{cases}\] is continuous but not differentiable at x = 1.
If f is defined by f (x) = x2, find f'(2).
Discuss the continuity and differentiability of f (x) = e|x| .
Is every differentiable function continuous?
If f (x) is differentiable at x = c, then write the value of
Let \[f\left( x \right) = \left( x + \left| x \right| \right) \left| x \right|\]
If \[f\left( x \right) = \left| \log_e |x| \right|\]
Discuss the continuity of f at x = 1 ,
Where f(x) = `(3 - sqrt(2x + 7))/(x - 1)` for x = ≠ 1
= `(-1)/3` for x = 1
If the function f is continuous at x = 0
Where f(x) = 2`sqrt(x^3 + 1)` + a, for x < 0,
= `x^3 + a + b, for x > 0
and f (1) = 2, then find a and b.
The total cost C for producing x units is Rs (x2 + 60x + 50) and the price is Rs (180 - x) per unit. For how many units the profit is maximum.
If the function f (x) = `(15^x - 3^x - 5^x + 1)/(x tanx)`, x ≠ 0 is continuous at x = 0 , then find f(0).
If y = ( sin x )x , Find `dy/dx`
Discuss the continuity of the function at the point given. If the function is discontinuous, then remove the discontinuity.
f (x) = `(sin^2 5x)/x^2` for x ≠ 0
= 5 for x = 0, at x = 0
If the function f is continuous at x = 2, then find 'k' where
f(x) = `(x^2 + 5)/(x - 1),` for 1< x ≤ 2
= kx + 1 , for x > 2
Show that the function f defined by f(x) = `{{:(x sin 1/x",", x ≠ 0),(0",", x = 0):}` is continuous at x = 0.
The function given by f (x) = tanx is discontinuous on the set ______.
f(x) = `{{:(x^2/2",", "if" 0 ≤ x ≤ 1),(2x^2 - 3x + 3/2",", "if" 1 < x ≤ 2):}` at x = 1
Given the function f(x) = `1/(x + 2)`. Find the points of discontinuity of the composite function y = f(f(x))
Examine the differentiability of f, where f is defined by
f(x) = `{{:(1 + x",", "if" x ≤ 2),(5 - x",", "if" x > 2):}` at x = 2
Show that f(x) = |x – 5| is continuous but not differentiable at x = 5.
Find the values of p and q so that f(x) = `{{:(x^2 + 3x + "p"",", "if" x ≤ 1),("q"x + 2",", "if" x > 1):}` is differentiable at x = 1
If f(x) = `x^2 sin 1/x` where x ≠ 0, then the value of the function f at x = 0, so that the function is continuous at x = 0, is ______.
The composition of two continuous function is a continuous function.