मराठी

Let \[F\Left( X \Right) = \Left( X + \Left| X \Right| \Right) \Left| X \Right|\] - Mathematics

Advertisements
Advertisements

प्रश्न

Let \[f\left( x \right) = \left( x + \left| x \right| \right) \left| x \right|\]

पर्याय

  • f is continuous

  •  f is differentiable for some x

  • f' is continuous

  • f'' is continuous

MCQ

उत्तर

(a) f is continuous
(c) f' is continuous

\[\text{ We have }, \]
\[f\left( x \right) = \left( x + \left| x \right| \right) \left| x \right|\]
\[ = x\left| x \right| + \left( \left| x \right| \right)^2 \]
\[ = x\left| x \right| + x^2 \]

`f(x) = {(2x^2 ,xge0),(0, x<0):}`
\[\text{To check continuity of} f\left( x \right) \text { at x } = 0\]
\[\left( \text {LHL at x } = 0 \right) = \lim_{x \to 0^-} f\left( x \right)\]
\[ = \lim_{x \to 0^-} 0\]
\[ = 0\]
\[\left( \text { RHL at x } = 0 \right) = \lim_{x \to 0^+} f\left( x \right)\]
\[ = \lim_{x \to 0^+} 2 x^2 \]
\[ = 0\]
\[\text { And } f\left( 0 \right) = 0\]
\[\text { Here, LHL = RHL } = f\left( 0 \right)\]
Therefore,f (x) is continous at x = 0
Hence,f(x) is continous everywhere.

\[\text{To check the differentiability of} f\left( x \right) \text { at} x = 0\]
\[\left(\text {  LHD at x } = 0 \right) = \lim_{x \to 0^-} \frac{f\left( x \right) - f\left( 0 \right)}{x - 0}\]
\[ = \lim_{x \to 0^-} \frac{0 - 0}{x} = 0\]
\[\left( \text { RHD at x } = 0 \right) = \lim_{x \to 0^+} \frac{f\left( x \right) - f\left( 0 \right)}{x - 0}\]
\[ = \lim_{x \to 0^-} \frac{2 x^2 - 0}{x}\]
\[ = \lim_{x \to 0^-} \frac{2 x^2 - 0}{x}\]
\[ = \lim_{x \to 0^-} 2x = 0\]
LHD = RHD
Therefore,f(x) is derivative at x = 0

Hence,f(x) is differeentiable everywhere.

f' (x) = `{(4x,xge 0),(0 ,x<0):}`

\[\text{To check continuity of }f'\left( x \right) \text{ at }x = 0\]
\[\left( \text { LHL at x } = 0 \right) = \lim_{x \to 0^-} f'\left( x \right)\]
\[ = \lim_{x \to 0^-} 0\]
\[ = 0\]
\[\left( \text { RHL at x } = 0 \right) = \lim_{x \to 0^+} f'\left( x \right)\]
\[ = \lim_{x \to 0^+} 4x\]
\[ = 0\]
\[\text { And } f'\left( 0 \right) = 0\]
\[\text { Here, LHL = RHL } = f'\left( 0 \right)\]
Therefore,f" (x) is not continous at x = 0
Hence ,f" (x) is not continous everywhere.

f" (x) =` {(4,xge0),(0, x<0):}`

\[\text { To check continuity of } f''\left( x \right) \text { at x }= 0\]

\[\left( \text { LHL at x } = 0 \right) = \lim_{x \to 0^-} f''\left( x \right)\]

\[ = \lim_{x \to 0^-} 0\]

\[ = 0\]

\[\left( \text { RHL at x } = 0 \right) = \lim_{x \to 0^+} f''\left( x \right)\]

\[ = \lim_{x \to 0^+} 4\]

\[ = 4\]

\[\text { Therefore, LHL} \neq \text { RHL } \]

\[\text { Therefore }, f''\left( x \right) \text { is not continuous at x = 0 }\]

\[\text { Hence, } f''\left( x \right) \text { is not continuous everywhere }.\]

shaalaa.com
  या प्रश्नात किंवा उत्तरात काही त्रुटी आहे का?
पाठ 10: Differentiability - Exercise 10.4 [पृष्ठ १८]

APPEARS IN

आरडी शर्मा Mathematics [English] Class 12
पाठ 10 Differentiability
Exercise 10.4 | Q 5 | पृष्ठ १८

व्हिडिओ ट्यूटोरियलVIEW ALL [4]

संबंधित प्रश्‍न

Examine the continuity of the following function :

`{:(,,f(x)= x^2 -x+9,"for",x≤3),(,,=4x+3,"for",x>3):}}"at "x=3`


If f(x)= `{((sin(a+1)x+2sinx)/x,x<0),(2,x=0),((sqrt(1+bx)-1)/x,x>0):}`

is continuous at x = 0, then find the values of a and b.


Examine the following function for continuity:

f (x) = x – 5


Examine the following function for continuity:

`f(x) = (x^2 - 25)/(x + 5), x != -5`


Discuss the continuity of the function f, where f is defined by `f(x) = {(2x , ","if x < 0),(0, "," if 0 <= x <= 1),(4x, "," if x > 1):}`


Discuss the continuity of the following functions at the indicated point(s): 

(i) \[f\left( x \right) = \begin{cases}\left| x \right| \cos\left( \frac{1}{x} \right), & x \neq 0 \\ 0 , & x = 0\end{cases}at x = 0\]

 


Discuss the continuity of the following functions at the indicated point(s): 

\[f\left( x \right) = \begin{cases}\frac{\left| x^2 - 1 \right|}{x - 1}, for & x \neq 1 \\ 2 , for & x = 1\end{cases}at x = 1\]

If   \[f\left( x \right) = \begin{cases}\frac{2^{x + 2} - 16}{4^x - 16}, \text{ if } & x \neq 2 \\ k , \text{ if }  & x = 2\end{cases}\]  is continuous at x = 2, find k.


In each of the following, find the value of the constant k so that the given function is continuous at the indicated point;  \[f\left( x \right) = \begin{cases}k x^2 , & x \geq 1 \\ 4 , & x < 1\end{cases}\]at x = 1

 


Let\[f\left( x \right) = \left\{ \begin{array}\frac{1 - \sin^3 x}{3 \cos^2 x} , & \text{ if }  x < \frac{\pi}{2} \\ a , & \text{ if }  x = \frac{\pi}{2} \\ \frac{b(1 - \sin x)}{(\pi - 2x )^2}, & \text{ if }  x > \frac{\pi}{2}\end{array} . \right.\] ]If f(x) is continuous at x = \[\frac{\pi}{2}\] , find a and b.

 

Write the value of b for which \[f\left( x \right) = \begin{cases}5x - 4 & 0 < x \leq 1 \\ 4 x^2 + 3bx & 1 < x < 2\end{cases}\]  is continuous at x = 1.

 


If f (x) = | x − a | ϕ (x), where ϕ (x) is continuous function, then


The value of f (0), so that the function 

\[f\left( x \right) = \frac{\sqrt{a^2 - ax + x^2} - \sqrt{a^2 + ax + x^2}}{\sqrt{a + x} - \sqrt{a - x}}\]   becomes continuous for all x, given by

If  \[f\left( x \right) = \begin{cases}\frac{1 - \sin^2 x}{3 \cos^2 x} , & x < \frac{\pi}{2} \\ a , & x = \frac{\pi}{2} \\ \frac{b\left( 1 - \sin x \right)}{\left( \pi - 2x \right)^2}, & x > \frac{\pi}{2}\end{cases}\]. Then, f (x) is continuous at  \[x = \frac{\pi}{2}\], if

 


Show that \[f\left( x \right) =\]`{(12x, -,13, if , x≤3),(2x^2, +,5, if x,>3):}` is differentiable at x = 3. Also, find f'(3).


Show that the function 

\[f\left( x \right) = \begin{cases}\left| 2x - 3 \right| \left[ x \right], & x \geq 1 \\ \sin \left( \frac{\pi x}{2} \right), & x < 1\end{cases}\] is continuous but not differentiable at x = 1.


Is every differentiable function continuous?


Write the points of non-differentiability of 

\[f \left( x \right) = \left| \log \left| x \right| \right| .\]

Let f (x) = |sin x|. Then,


Find whether the following function is differentiable at x = 1 and x = 2 or not : \[f\left( x \right) = \begin{cases}x, & & x < 1 \\ 2 - x, & & 1 \leq x \leq 2 \\ - 2 + 3x - x^2 , & & x > 2\end{cases}\] .


Examine the continuity of f(x)=`x^2-x+9  "for"  x<=3`

=`4x+3  "for"  x>3,  "at"  x=3` 


Find k, if the function f is continuous at x = 0, where

`f(x)=[(e^x - 1)(sinx)]/x^2`,      for x ≠ 0

     = k                             ,        for x = 0


Examine the continuity off at x = 1, if

f (x) = 5x - 3 , for 0 ≤ x ≤ 1

       = x2 + 1 , for 1 ≤ x ≤ 2


 If the function f (x) = `(15^x - 3^x - 5^x + 1)/(x tanx)`,  x ≠ 0 is continuous at x = 0 , then find f(0).


Examine the continuity of the following function :

`{:(,f(x),=(x^2-16)/(x-4),",","for "x!=4),(,,=8,",","for "x=4):}} " at " x=4`


The probability distribution function of continuous random variable X is given by
f( x ) = `x/4`,  0 < x < 2
        = 0,       Otherwise
Find P( x ≤ 1)


Discuss the continuity of the function f at x = 0, where
f(x) = `(5^x + 5^-x - 2)/(cos2x - cos6x),` for x ≠ 0
      = `1/8(log 5)^2,`  for x = 0


Show that the function f defined by f(x) = `{{:(x sin  1/x",", x ≠ 0),(0",", x = 0):}` is continuous at x = 0.


The function given by f (x) = tanx is discontinuous on the set ______.


The function f(x) = |x| + |x – 1| is ______.


The set of points where the functions f given by f(x) = |x – 3| cosx is differentiable is ______.


For continuity, at x = a, each of `lim_(x -> "a"^+) "f"(x)` and `lim_(x -> "a"^-) "f"(x)` is equal to f(a).


f(x) = `{{:(3x + 5",", "if"  x ≥ 2),(x^2",", "if"  x < 2):}` at x = 2


Show that f(x) = |x – 5| is continuous but not differentiable at x = 5.


The set of points where the function f given by f(x) = |2x − 1| sinx is differentiable is ______.


If f(x) = `x^2 sin  1/x` where x ≠ 0, then the value of the function f at x = 0, so that the function is continuous at x = 0, is ______.


Share
Notifications

Englishहिंदीमराठी


      Forgot password?
Use app×