English

Let F ( X ) = { 1 − Cos X X 2 , W H E N X ≠ 0 1 , W H E N X = 0 Show that F(X) is Discontinuous at X = 0. - Mathematics

Advertisements
Advertisements

Question

Let \[f\left( x \right) = \begin{cases}\frac{1 - \cos x}{x^2}, when & x \neq 0 \\ 1 , when & x = 0\end{cases}\] Show that f(x) is discontinuous at x = 0.

 

 

Solution

Given: 

\[f\left( x \right) = \binom{\frac{1 - \ cosx}{x^2}, when x \neq 0}{1, when x = 0}\]

Consider:

\[\lim_{x \to 0} f\left( x \right) = \lim_{x \to 0} \left( \frac{1 - \ cosx}{x^2} \right)\]

\[ \Rightarrow \lim_{x \to 0} f\left( x \right) = \lim_{x \to 0} \left( \frac{2 \sin^2 \frac{x}{2}}{x^2} \right)\]

\[ \Rightarrow \lim_{x \to 0} f\left( x \right) = \lim_{x \to 0} \left( \frac{2 \sin^2 \frac{x}{2}}{4\left( \frac{x^2}{4} \right)} \right)\]

\[ \Rightarrow \lim_{x \to 0} f\left( x \right) = \lim_{x \to 0} \left( \frac{2 \left( \sin\frac{x}{2} \right)^2}{4 \left( \frac{x}{2} \right)^2} \right)\]

\[ \Rightarrow \lim_{x \to 0} f\left( x \right) = \frac{2}{4} \lim_{x \to 0} \left( \frac{sin\frac{x}{2}}{\frac{x}{2}} \right)^2 \]

\[ \Rightarrow \lim_{x \to 0} f\left( x \right) = \frac{1}{2} \cdot 1^2 = \frac{1}{2}\]

Given:

\[f\left( 0 \right) = 1\]
\[\lim_{x \to 0} f\left( x \right) \neq f\left( 0 \right)\]

Thus, f(x) is discontinuous at x = 0.

shaalaa.com
  Is there an error in this question or solution?
Chapter 9: Continuity - Exercise 9.1 [Page 17]

APPEARS IN

RD Sharma Mathematics [English] Class 12
Chapter 9 Continuity
Exercise 9.1 | Q 7 | Page 17

RELATED QUESTIONS

Determine the value of 'k' for which the following function is continuous at x = 3

`f(x) = {(((x + 3)^2 - 36)/(x - 3),  x != 3), (k,  x = 3):}`


A function f(x) is defined as,

\[f\left( x \right) = \begin{cases}\frac{x^2 - x - 6}{x - 3}; if & x \neq 3 \\ 5 ; if & x = 3\end{cases}\]  Show that f(x) is continuous that x = 3.

Discuss the continuity of the following functions at the indicated point(s): 

\[f\left( x \right) = \left\{ \begin{array}{l}\frac{2\left| x \right| + x^2}{x}, & x \neq 0 \\ 0 , & x = 0\end{array}at x = 0 \right.\]

In each of the following, find the value of the constant k so that the given function is continuous at the indicated point;  

\[f\left( x \right) = \begin{cases}k( x^2 - 2x), \text{ if }  & x < 0 \\ \cos x, \text{ if }  & x \geq 0\end{cases}\] at x = 0

In each of the following, find the value of the constant k so that the given function is continuous at the indicated point; \[f\left( x \right) = \begin{cases}k( x^2 + 2), \text{if} & x \leq 0 \\ 3x + 1 , \text{if} & x > 0\end{cases}\]


For what value of k is the following function continuous at x = 2? 

\[f\left( x \right) = \begin{cases}2x + 1 ; & \text{ if } x < 2 \\ k ; & x = 2 \\ 3x - 1 ; & x > 2\end{cases}\]

Find the points of discontinuity, if any, of the following functions:  \[f\left( x \right) = \begin{cases}\frac{\sin 3x}{x}, & \text{ if }   x \neq 0 \\ 4 , & \text{ if }  x = 0\end{cases}\]

 


Find the points of discontinuity, if any, of the following functions: 

\[f\left( x \right) = \begin{cases}\frac{e^x - 1}{\log_e (1 + 2x)}, & \text{ if }x \neq 0 \\ 7 , & \text{ if } x = 0\end{cases}\]

Given the function  
\[f\left( x \right) = \frac{1}{x + 2}\] . Find the points of discontinuity of the function f(f(x)).

Find f (0), so that  \[f\left( x \right) = \frac{x}{1 - \sqrt{1 - x}}\]  becomes continuous at x = 0.

 


If f (x) = | x − a | ϕ (x), where ϕ (x) is continuous function, then


If the function \[f\left( x \right) = \begin{cases}\left( \cos x \right)^{1/x} , & x \neq 0 \\ k , & x = 0\end{cases}\] is continuous at x = 0, then the value of k is


If  \[f\left( x \right) = \frac{1}{1 - x}\] , then the set of points discontinuity of the function f (f(f(x))) is


If  \[f\left( x \right) = \begin{cases}a \sin\frac{\pi}{2}\left( x + 1 \right), & x \leq 0 \\ \frac{\tan x - \sin x}{x^3}, & x > 0\end{cases}\] is continuous at x = 0, then a equals


If  \[f\left( x \right) = \left\{ \begin{array}a x^2 + b , & 0 \leq x < 1 \\ 4 , & x = 1 \\ x + 3 , & 1 < x \leq 2\end{array}, \right.\] then the value of (ab) for which f (x) cannot be continuous at x = 1, is

 


The points of discontinuity of the function 

\[f\left( x \right) = \begin{cases}2\sqrt{x} , & 0 \leq x \leq 1 \\ 4 - 2x , & 1 < x < \frac{5}{2} \\ 2x - 7 , & \frac{5}{2} \leq x \leq 4\end{cases}\text{ is } \left( \text{ are }\right)\] 


Show that \[f\left( x \right) =\]`{(12x, -,13, if , x≤3),(2x^2, +,5, if x,>3):}` is differentiable at x = 3. Also, find f'(3).


Find whether the function is differentiable at x = 1 and x = 2 

\[f\left( x \right) = \begin{cases}x & x \leq 1 \\ \begin{array} 22 - x  \\ - 2 + 3x - x^2\end{array} & \begin{array}11 \leq x \leq 2 \\ x > 2\end{array}\end{cases}\]

If \[f\left( x \right) = \begin{cases}a x^2 - b, & \text { if }\left| x \right| < 1 \\ \frac{1}{\left| x \right|} , & \text { if }\left| x \right| \geq 1\end{cases}\]  is differentiable at x = 1, find a, b.


If f (x) is differentiable at x = c, then write the value of 

\[\lim_{x \to c} f \left( x \right)\]

Let f (x) = |x| and g (x) = |x3|, then


Let \[f\left( x \right) = \begin{cases}1 , & x \leq - 1 \\ \left| x \right|, & - 1 < x < 1 \\ 0 , & x \geq 1\end{cases}\] Then, f is 


Examine the continuity of f(x)=`x^2-x+9  "for"  x<=3`

=`4x+3  "for"  x>3,  "at"  x=3` 


If f is continuous at x = 0, then find f (0). 

Where f(x) = `(3^"sin x" - 1)^2/("x" . "log" ("x" + 1)) , "x" ≠ 0`


If the function f is continuous at = 2, then find f(2) where f(x) = `(x^5 - 32)/(x - 2)`, for ≠ 2.


If the function f is continuous at x = 0

Where f(x) = 2`sqrt(x^3 + 1)` + a,  for x < 0,
= `x^3 + a + b,  for x > 0
and f (1) = 2, then find a and b.


Show that the function f given by f(x) = `{{:(("e"^(1/x) - 1)/("e"^(1/x) + 1)",", "if"  x ≠ 0),(0",",  "if"  x = 0):}` is discontinuous at x = 0.


Let f(x) = `{{:((1 - cos 4x)/x^2",",  "if"  x < 0),("a"",",  "if"  x = 0),(sqrt(x)/(sqrt(16) + sqrt(x) - 4)",", "if"  x > 0):}`. For what value of a, f is continuous at x = 0?


y = |x – 1| is a continuous function.


A continuous function can have some points where limit does not exist.


Examine the continuity of the function f(x) = x3 + 2x2 – 1 at x = 1


f(x) = `{{:(3x - 8",",  "if"  x ≤ 5),(2"k"",",  "if"  x > 5):}` at x = 5


Find the values of a and b such that the function f defined by
f(x) = `{{:((x - 4)/(|x - 4|) + "a"",",  "if"  x < 4),("a" + "b"",",  "if"  x = 4),((x - 4)/(|x - 4|) + "b"",", "if"  x > 4):}`
is a continuous function at x = 4.


Show that f(x) = |x – 5| is continuous but not differentiable at x = 5.


If the following function is continuous at x = 2 then the value of k will be ______.

f(x) = `{{:(2x + 1",", if x < 2),(                 k",", if x = 2),(3x - 1",", if x > 2):}`


Share
Notifications

Englishहिंदीमराठी


      Forgot password?
Use app×