Advertisements
Advertisements
प्रश्न
f(x) = |x| + |x − 1| at x = 1
उत्तर
We have, f(x) = |x| + |x − 1| at x = 1
At x = 1
L.H.L. = `lim_(x -> 1^-) [|x| + |x - 1|]`
= `lim_("h" -? 0^-) [|1 - "h"| + |1 - "h" - 1|]`
= 1 + 0
= 1
And R.H.L. = `lim_(x ->^+) [|x| + x - 1|]`
= `lim_("h" -> 0) [|1 + "h"| + |1 + "h" - 1|]`
= 1 + 0
= 1
Also f(1) = |1| + |0| = 1
Thus, L.H.L. = R.H.L = f(1)
Hence, f(x) is continuous at x = 1
Alternative method:
Since every modulus function is continuous for all real x
|x| and |x – 1| are continuous for all real x.
So, |x| + |x – 1| is continuous for all real x and hence at x = 0.
APPEARS IN
संबंधित प्रश्न
Examine the continuity of the following function :
`{:(,,f(x)= x^2 -x+9,"for",x≤3),(,,=4x+3,"for",x>3):}}"at "x=3`
If 'f' is continuous at x = 0, then find f(0).
`f(x)=(15^x-3^x-5^x+1)/(xtanx) , x!=0`
If f(x)= `{((sin(a+1)x+2sinx)/x,x<0),(2,x=0),((sqrt(1+bx)-1)/x,x>0):}`
is continuous at x = 0, then find the values of a and b.
Discuss the continuity of the function f(x) at the point x = 0, where \[f\left( x \right) = \begin{cases}x, x > 0 \\ 1, x = 0 \\ - x, x < 0\end{cases}\]
Determine the value of the constant k so that the function
\[f\left( x \right) = \begin{cases}k x^2 , if & x \leq 2 \\ 3 , if & x > 2\end{cases}\text{is continuous at x} = 2 .\]
Determine the values of a, b, c for which the function f(x) = `{((sin(a + 1)x + sin x)/x, "for" x < 0),(x, "for" x = 0),((sqrt(x + bx^2) - sqrtx)/(bx^(3"/"2)), "for" x > 0):}` is continuous at x = 0.
In each of the following, find the value of the constant k so that the given function is continuous at the indicated point;
In each of the following, find the value of the constant k so that the given function is continuous at the indicated point; \[f\left( x \right) = \begin{cases}k( x^2 + 2), \text{if} & x \leq 0 \\ 3x + 1 , \text{if} & x > 0\end{cases}\]
Find the points of discontinuity, if any, of the following functions: \[f\left( x \right) = \begin{cases}\left| x - 3 \right|, & \text{ if } x \geq 1 \\ \frac{x^2}{4} - \frac{3x}{2} + \frac{13}{4}, & \text{ if } x < 1\end{cases}\]
Find all the points of discontinuity of f defined by f (x) = | x |− | x + 1 |.
Define continuity of a function at a point.
Find f (0), so that \[f\left( x \right) = \frac{x}{1 - \sqrt{1 - x}}\] becomes continuous at x = 0.
The function
If \[f\left( x \right) = \begin{cases}\frac{\sin \left( \cos x \right) - \cos x}{\left( \pi - 2x \right)^2}, & x \neq \frac{\pi}{2} \\ k , & x = \frac{\pi}{2}\end{cases}\]is continuous at x = π/2, then k is equal to
Discuss the continuity and differentiability of f (x) = e|x| .
If \[f\left( x \right) = \sqrt{1 - \sqrt{1 - x^2}},\text{ then } f \left( x \right)\text { is }\]
Let \[f\left( x \right) = \begin{cases}1 , & x \leq - 1 \\ \left| x \right|, & - 1 < x < 1 \\ 0 , & x \geq 1\end{cases}\] Then, f is
Find whether the following function is differentiable at x = 1 and x = 2 or not : \[f\left( x \right) = \begin{cases}x, & & x < 1 \\ 2 - x, & & 1 \leq x \leq 2 \\ - 2 + 3x - x^2 , & & x > 2\end{cases}\] .
Examine the continuity of f(x)=`x^2-x+9 "for" x<=3`
=`4x+3 "for" x>3, "at" x=3`
The value of k which makes the function defined by f(x) = `{{:(sin 1/x",", "if" x ≠ 0),("k"",", "if" x = 0):}`, continuous at x = 0 is ______.
The number of points at which the function f(x) = `1/(log|x|)` is discontinuous is ______.
Examine the continuity of the function f(x) = x3 + 2x2 – 1 at x = 1
f(x) = `{{:((2x^2 - 3x - 2)/(x - 2)",", "if" x ≠ 2),(5",", "if" x = 2):}` at x = 2
f(x) = `{{:(3x - 8",", "if" x ≤ 5),(2"k"",", "if" x > 5):}` at x = 5
If f is continuous on its domain D, then |f| is also continuous on D.
The composition of two continuous function is a continuous function.
If the following function is continuous at x = 2 then the value of k will be ______.
f(x) = `{{:(2x + 1",", if x < 2),( k",", if x = 2),(3x - 1",", if x > 2):}`