Advertisements
Advertisements
प्रश्न
If \[f\left( x \right) = \begin{cases}\frac{\sin \left( \cos x \right) - \cos x}{\left( \pi - 2x \right)^2}, & x \neq \frac{\pi}{2} \\ k , & x = \frac{\pi}{2}\end{cases}\]is continuous at x = π/2, then k is equal to
पर्याय
0
\[\frac{1}{2}\]
1
−1
उत्तर
Given:
If f(x) is continuous at \[x = \frac{\pi}{2}\], then
Now,
Also,
\[\Rightarrow \lim_{y \to 0} \frac{2 \sin\left( \frac{\sin y - y}{2} \right) \cos\left( \frac{\sin y + y}{2} \right)}{4 y^2} = k \left[ \because \sin C - \sin D = 2 sin\left( \frac{C - D}{2} \right) \cos\left( \frac{C + D}{2} \right) \right]\]
\[ \Rightarrow \frac{1}{2} \lim_{y \to 0} \frac{\sin\left( \frac{\sin y - y}{2} \right)}{y}\frac{\cos\left( \frac{\sin y + y}{2} \right)}{y} = k\]
\[ \Rightarrow \frac{1}{2} \lim_{y \to 0} \frac{\left( \frac{\sin y - y}{2} \right) \sin\left( \frac{\sin y - y}{2} \right)}{y\left( \frac{\sin y - y}{2} \right)}\frac{\cos\left( \frac{\sin y + y}{2} \right)}{y} = k\]
\[ \Rightarrow \frac{1}{2} \lim_{y \to 0} \left( \frac{\left( \frac{\sin y - y}{2} \right)}{y} \right)\left( \frac{\sin\left( \frac{\sin y - y}{2} \right)}{\left( \frac{\sin y - y}{2} \right)} \right)\left( \frac{\cos\left( \frac{\sin y + y}{2} \right)}{y} \right) = k\]
\[ \Rightarrow \frac{1}{2} \lim_{y \to 0} \left( \frac{\left( \frac{\sin y - y}{2} \right)}{y} \right) \lim_{y \to 0} \left( \frac{\sin\left( \frac{\sin y - y}{2} \right)}{\left( \frac{\sin y - y}{2} \right)} \right) \lim_{y \to 0} \left( \frac{\cos\left( \frac{\sin y + y}{2} \right)}{y} \right) = k\]
\[ \Rightarrow \frac{1}{4} \lim_{y \to 0} \left( \frac{\sin y}{y} - 1 \right) \lim_{y \to 0} \left( \frac{\sin\left( \frac{\sin y - y}{2} \right)}{\left( \frac{\sin y - y}{2} \right)} \right) \lim_{y \to 0} \left( \frac{\cos\left( \frac{\sin y + y}{2} \right)}{y} \right) = k\]
\[ \Rightarrow \frac{1}{4} \times 0 \times 1 \times \lim_{y \to 0} \left( \frac{\cos\left( \frac{\sin y + y}{2} \right)}{y} \right) = k\]
\[ \Rightarrow 0 = k\]
APPEARS IN
संबंधित प्रश्न
Discuss the continuity of the function f, where f is defined by `f(x) = {(2x , ","if x < 0),(0, "," if 0 <= x <= 1),(4x, "," if x > 1):}`
A function f(x) is defined as
Show that f(x) is continuous at x = 3
Show that
is discontinuous at x = 0.
Discuss the continuity of the following functions at the indicated point(s):
For what value of k is the function
\[f\left( x \right) = \begin{cases}\frac{\sin 5x}{3x}, if & x \neq 0 \\ k , if & x = 0\end{cases}\text{is continuous at x} = 0?\]
Discuss the continuity of the f(x) at the indicated points:
(i) f(x) = | x | + | x − 1 | at x = 0, 1.
Find the points of discontinuity, if any, of the following functions: \[f\left( x \right) = \begin{cases}\frac{\sin 3x}{x}, & \text{ if } x \neq 0 \\ 4 , & \text{ if } x = 0\end{cases}\]
Discuss the continuity of the function \[f\left( x \right) = \begin{cases}2x - 1 , & \text { if } x < 2 \\ \frac{3x}{2} , & \text{ if } x \geq 2\end{cases}\]
Determine if \[f\left( x \right) = \begin{cases}x^2 \sin\frac{1}{x} , & x \neq 0 \\ 0 , & x = 0\end{cases}\] is a continuous function?
Let f (x) = | x | + | x − 1|, then
The value of f (0) so that the function
The points of discontinuity of the function\[f\left( x \right) = \begin{cases}\frac{1}{5}\left( 2 x^2 + 3 \right) , & x \leq 1 \\ 6 - 5x , & 1 < x < 3 \\ x - 3 , & x \geq 3\end{cases}\text{ is } \left( are \right)\]
Show that \[f\left( x \right) =\]`{(12x, -,13, if , x≤3),(2x^2, +,5, if x,>3):}` is differentiable at x = 3. Also, find f'(3).
Show that the function
\[f\left( x \right) = \begin{cases}\left| 2x - 3 \right| \left[ x \right], & x \geq 1 \\ \sin \left( \frac{\pi x}{2} \right), & x < 1\end{cases}\] is continuous but not differentiable at x = 1.
If \[f\left( x \right) = \begin{cases}a x^2 - b, & \text { if }\left| x \right| < 1 \\ \frac{1}{\left| x \right|} , & \text { if }\left| x \right| \geq 1\end{cases}\] is differentiable at x = 1, find a, b.
Write an example of a function which is everywhere continuous but fails to differentiable exactly at five points.
Discuss the continuity and differentiability of f (x) = e|x| .
Define differentiability of a function at a point.
Write the points where f (x) = |loge x| is not differentiable.
Write the points of non-differentiability of
If \[f\left( x \right) = \left| \log_e |x| \right|\]
Examine the continuity of f(x)=`x^2-x+9 "for" x<=3`
=`4x+3 "for" x>3, "at" x=3`
If the function f is continuous at x = 0
Where f(x) = 2`sqrt(x^3 + 1)` + a, for x < 0,
= `x^3 + a + b, for x > 0
and f (1) = 2, then find a and b.
Find `dy/dx if y = tan^-1 ((6x)/[ 1 - 5x^2])`
If y = ( sin x )x , Find `dy/dx`
Discuss the continuity of the function at the point given. If the function is discontinuous, then remove the discontinuity.
f (x) = `(sin^2 5x)/x^2` for x ≠ 0
= 5 for x = 0, at x = 0
Discuss the continuity of the function `f(x) = (3 - sqrt(2x + 7))/(x - 1)` for x ≠ 1
= `-1/3` for x = 1, at x = 1
Show that the function f given by f(x) = `{{:(("e"^(1/x) - 1)/("e"^(1/x) + 1)",", "if" x ≠ 0),(0",", "if" x = 0):}` is discontinuous at x = 0.
Examine the differentiability of the function f defined by
f(x) = `{{:(2x + 3",", "if" -3 ≤ x < - 2),(x + 1",", "if" -2 ≤ x < 0),(x + 2",", "if" 0 ≤ x ≤ 1):}`
The number of points at which the function f(x) = `1/(x - [x])` is not continuous is ______.
f(x) = `{{:(|x - "a"| sin 1/(x - "a")",", "if" x ≠ 0),(0",", "if" x = "a"):}` at x = a
Examine the differentiability of f, where f is defined by
f(x) = `{{:(1 + x",", "if" x ≤ 2),(5 - x",", "if" x > 2):}` at x = 2
The set of points where the function f given by f(x) = |2x − 1| sinx is differentiable is ______.
An example of a function which is continuous everywhere but fails to be differentiable exactly at two points is ______.
Given functions `"f"("x") = ("x"^2 - 4)/("x" - 2) "and g"("x") = "x" + 2, "x" le "R"`. Then which of the following is correct?
If the following function is continuous at x = 2 then the value of k will be ______.
f(x) = `{{:(2x + 1",", if x < 2),( k",", if x = 2),(3x - 1",", if x > 2):}`