मराठी

If F ( X ) = ⎧ ⎨ ⎩ Sin ( Cos X ) − Cos X ( π − 2 X ) 2 , X ≠ π 2 K , X = π 2 is Continuous at X = π/2, Then K is Equal to (A) 0 (B) 1 2 (C) 1 (D) −1 - Mathematics

Advertisements
Advertisements

प्रश्न

If  \[f\left( x \right) = \begin{cases}\frac{\sin \left( \cos x \right) - \cos x}{\left( \pi - 2x \right)^2}, & x \neq \frac{\pi}{2} \\ k , & x = \frac{\pi}{2}\end{cases}\]is continuous at x = π/2, then k is equal to

पर्याय

  • 0

  • \[\frac{1}{2}\] 

  • 1

  • −1

MCQ

उत्तर

Given:  

\[f\left( x \right) = \binom{\frac{\sin\left( \cos x \right) - \cos x}{\left( \pi - 2x \right)^2}, x \neq \frac{\pi}{2}}{k, x = \frac{\pi}{2}}\]

If f(x) is continuous at  \[x = \frac{\pi}{2}\], then

\[\lim_{x \to \frac{\pi}{2}} f\left( x \right) = f\left( \frac{\pi}{2} \right)\]
\[\Rightarrow \lim_{x \to \frac{\pi}{2}} \frac{\sin\left( \cos x \right) - \cos x}{\left( \pi - 2x \right)^2} = k\]

Now,

\[\frac{\pi}{2} - x = y\]
\[\Rightarrow \pi - 2x = 2y\]

Also,

\[x \to \frac{\pi}{2}, y \to 0\]
\[\Rightarrow \lim_{y \to 0} \frac{\sin\left( \cos\left( \frac{\pi}{2} - y \right) \right) - \cos\left( \frac{\pi}{2} - y \right)}{4 y^2} = k\]
\[\Rightarrow \lim_{y \to 0} \frac{\sin\left( \sin y \right) - \sin\left( y \right)}{4 y^2} = k\]

\[\Rightarrow \lim_{y \to 0} \frac{2 \sin\left( \frac{\sin y - y}{2} \right) \cos\left( \frac{\sin y + y}{2} \right)}{4 y^2} = k \left[ \because \sin C - \sin D = 2 sin\left( \frac{C - D}{2} \right) \cos\left( \frac{C + D}{2} \right) \right]\]
\[ \Rightarrow \frac{1}{2} \lim_{y \to 0} \frac{\sin\left( \frac{\sin y - y}{2} \right)}{y}\frac{\cos\left( \frac{\sin y + y}{2} \right)}{y} = k\]
\[ \Rightarrow \frac{1}{2} \lim_{y \to 0} \frac{\left( \frac{\sin y - y}{2} \right) \sin\left( \frac{\sin y - y}{2} \right)}{y\left( \frac{\sin y - y}{2} \right)}\frac{\cos\left( \frac{\sin y + y}{2} \right)}{y} = k\]
\[ \Rightarrow \frac{1}{2} \lim_{y \to 0} \left( \frac{\left( \frac{\sin y - y}{2} \right)}{y} \right)\left( \frac{\sin\left( \frac{\sin y - y}{2} \right)}{\left( \frac{\sin y - y}{2} \right)} \right)\left( \frac{\cos\left( \frac{\sin y + y}{2} \right)}{y} \right) = k\]
\[ \Rightarrow \frac{1}{2} \lim_{y \to 0} \left( \frac{\left( \frac{\sin y - y}{2} \right)}{y} \right) \lim_{y \to 0} \left( \frac{\sin\left( \frac{\sin y - y}{2} \right)}{\left( \frac{\sin y - y}{2} \right)} \right) \lim_{y \to 0} \left( \frac{\cos\left( \frac{\sin y + y}{2} \right)}{y} \right) = k\]
\[ \Rightarrow \frac{1}{4} \lim_{y \to 0} \left( \frac{\sin y}{y} - 1 \right) \lim_{y \to 0} \left( \frac{\sin\left( \frac{\sin y - y}{2} \right)}{\left( \frac{\sin y - y}{2} \right)} \right) \lim_{y \to 0} \left( \frac{\cos\left( \frac{\sin y + y}{2} \right)}{y} \right) = k\]
\[ \Rightarrow \frac{1}{4} \times 0 \times 1 \times \lim_{y \to 0} \left( \frac{\cos\left( \frac{\sin y + y}{2} \right)}{y} \right) = k\]
\[ \Rightarrow 0 = k\]

shaalaa.com
  या प्रश्नात किंवा उत्तरात काही त्रुटी आहे का?
पाठ 9: Continuity - Exercise 9.4 [पृष्ठ ४७]

APPEARS IN

आरडी शर्मा Mathematics [English] Class 12
पाठ 9 Continuity
Exercise 9.4 | Q 42 | पृष्ठ ४७

व्हिडिओ ट्यूटोरियलVIEW ALL [4]

संबंधित प्रश्‍न

Discuss the continuity of the function f, where f is defined by `f(x) = {(2x , ","if x < 0),(0, "," if 0 <= x <= 1),(4x, "," if x > 1):}`


A function f(x) is defined as 

\[f\left( x \right) = \begin{cases}\frac{x^2 - 9}{x - 3}; if & x \neq 3 \\ 6 ; if & x = 3\end{cases}\]

Show that f(x) is continuous at x = 3

 

Show that

\[f\left( x \right)\] = \begin{cases}\frac{x - \left| x \right|}{2}, when & x \neq 0 \\ 2 , when & x = 0\end{cases}

is discontinuous at x = 0.

 

Discuss the continuity of the following functions at the indicated point(s): 

\[f\left( x \right) = \binom{\left| x - a \right|\sin\left( \frac{1}{x - a} \right), for x \neq a}{0, for x = a}at x = a\] 

For what value of k is the function 

\[f\left( x \right) = \begin{cases}\frac{\sin 5x}{3x}, if & x \neq 0 \\ k , if & x = 0\end{cases}\text{is continuous at x} = 0?\]


Discuss the continuity of the f(x) at the indicated points: 

(i) f(x) = | x | + | x − 1 | at x = 0, 1.


Find the points of discontinuity, if any, of the following functions:  \[f\left( x \right) = \begin{cases}\frac{\sin 3x}{x}, & \text{ if }   x \neq 0 \\ 4 , & \text{ if }  x = 0\end{cases}\]

 


Discuss the continuity of the function  \[f\left( x \right) = \begin{cases}2x - 1 , & \text { if }  x < 2 \\ \frac{3x}{2} , & \text{ if  } x \geq 2\end{cases}\]


Determine if \[f\left( x \right) = \begin{cases}x^2 \sin\frac{1}{x} , & x \neq 0 \\ 0 , & x = 0\end{cases}\] is a continuous function?

 


Given the function  
\[f\left( x \right) = \frac{1}{x + 2}\] . Find the points of discontinuity of the function f(f(x)).

Let f (x) = | x | + | x − 1|, then


The value of f (0) so that the function 

\[f\left( x \right) = \frac{2 - \left( 256 - 7x \right)^{1/8}}{\left( 5x + 32 \right)^{1/5} - 2},\]  0 is continuous everywhere, is given by


The points of discontinuity of the function\[f\left( x \right) = \begin{cases}\frac{1}{5}\left( 2 x^2 + 3 \right) , & x \leq 1 \\ 6 - 5x , & 1 < x < 3 \\ x - 3 , & x \geq 3\end{cases}\text{ is } \left( are \right)\]  


Show that \[f\left( x \right) =\]`{(12x, -,13, if , x≤3),(2x^2, +,5, if x,>3):}` is differentiable at x = 3. Also, find f'(3).


Show that the function 

\[f\left( x \right) = \begin{cases}\left| 2x - 3 \right| \left[ x \right], & x \geq 1 \\ \sin \left( \frac{\pi x}{2} \right), & x < 1\end{cases}\] is continuous but not differentiable at x = 1.


If \[f\left( x \right) = \begin{cases}a x^2 - b, & \text { if }\left| x \right| < 1 \\ \frac{1}{\left| x \right|} , & \text { if }\left| x \right| \geq 1\end{cases}\]  is differentiable at x = 1, find a, b.


Write an example of a function which is everywhere continuous but fails to differentiable exactly at five points.


Discuss the continuity and differentiability of f (x) = e|x| .


Define differentiability of a function at a point.

 

Write the points where f (x) = |loge x| is not differentiable.


Write the points of non-differentiability of 

\[f \left( x \right) = \left| \log \left| x \right| \right| .\]

If \[f\left( x \right) = \left| \log_e |x| \right|\] 


Examine the continuity of f(x)=`x^2-x+9  "for"  x<=3`

=`4x+3  "for"  x>3,  "at"  x=3` 


If the function f is continuous at x = 0

Where f(x) = 2`sqrt(x^3 + 1)` + a,  for x < 0,
= `x^3 + a + b,  for x > 0
and f (1) = 2, then find a and b.


Find `dy/dx if y = tan^-1 ((6x)/[ 1 - 5x^2])`


If y = ( sin x )x , Find `dy/dx`


Discuss the continuity of the function at the point given. If the function is discontinuous, then remove the discontinuity.

f (x) = `(sin^2 5x)/x^2` for x ≠ 0 
= 5   for x = 0, at x = 0


Discuss the continuity of the function `f(x) = (3 - sqrt(2x + 7))/(x - 1)` for x ≠ 1

= `-1/3`   for x = 1, at x = 1


Show that the function f given by f(x) = `{{:(("e"^(1/x) - 1)/("e"^(1/x) + 1)",", "if"  x ≠ 0),(0",",  "if"  x = 0):}` is discontinuous at x = 0.


Examine the differentiability of the function f defined by
f(x) = `{{:(2x + 3",",  "if"  -3 ≤ x < - 2),(x + 1",",  "if"  -2 ≤ x < 0),(x + 2",",  "if"  0 ≤ x ≤ 1):}`


The number of points at which the function f(x) = `1/(x - [x])` is not continuous is ______.


f(x) = `{{:(|x - "a"| sin  1/(x - "a")",",  "if"  x ≠ 0),(0",",  "if"  x = "a"):}` at x = a


Examine the differentiability of f, where f is defined by
f(x) = `{{:(1 + x",",  "if"  x ≤ 2),(5 - x",",  "if"  x > 2):}` at x = 2


The set of points where the function f given by f(x) = |2x − 1| sinx is differentiable is ______.


An example of a function which is continuous everywhere but fails to be differentiable exactly at two points is ______.


Given functions `"f"("x") = ("x"^2 - 4)/("x" - 2) "and g"("x") = "x" + 2, "x" le "R"`. Then which of the following is correct?


If the following function is continuous at x = 2 then the value of k will be ______.

f(x) = `{{:(2x + 1",", if x < 2),(                 k",", if x = 2),(3x - 1",", if x > 2):}`


Share
Notifications

Englishहिंदीमराठी


      Forgot password?
Use app×