मराठी

The Value of F (0) So that the Function F ( X ) = 2 − ( 256 − 7 X ) 1 / 8 ( 5 X + 32 ) 1 / 5 − 2 , 0 is Continuous Everywhere, is Given by (A) −1 (B) 1 (C) 26 (D) None of These - Mathematics

Advertisements
Advertisements

प्रश्न

The value of f (0) so that the function 

\[f\left( x \right) = \frac{2 - \left( 256 - 7x \right)^{1/8}}{\left( 5x + 32 \right)^{1/5} - 2},\]  0 is continuous everywhere, is given by

पर्याय

  • −1

  • 1

  • 26

  • none of these

MCQ

उत्तर

none of these 

\[f\left( x \right) = \frac{2 - \left( 256 - 7x \right)^\frac{1}{8}}{\left( 5x + 32 \right)^\frac{1}{5} - 2}\]

 For  \[f\left( x \right)\]  to be continuous at x = 0, we must have

\[\lim_{x \to 0} f\left( x \right) = f\left( 0 \right)\]
\[\Rightarrow f\left( 0 \right) = \lim_{x \to 0} f\left( x \right) = \lim_{x \to 0} \frac{2 - \left( 256 - 7x \right)^\frac{1}{8}}{\left( 5x + 32 \right)^\frac{1}{5} - 2}\]
\[ \Rightarrow f\left( 0 \right) = \lim_{x \to 0} \frac{{256}^\frac{1}{8} - \left( 256 - 7x \right)^\frac{1}{8}}{\left( 5x + 32 \right)^\frac{1}{5} - {32}^\frac{1}{5}}\]
\[ = - \lim_{x \to 0} \frac{\frac{\left[ \left( 256 - 7x \right)^\frac{1}{8} - {256}^\frac{1}{8} \right]}{x}}{\frac{\left[ \left( 5x + 32 \right)^\frac{1}{5} - {32}^\frac{1}{5} \right]}{x}}\]
\[ = \frac{- 7}{5} \lim_{x \to 0} \frac{\frac{\left[ \left( 256 - 7x \right)^\frac{1}{8} - {256}^\frac{1}{8} \right]}{7x}}{\frac{\left[ \left( 5x + 32 \right)^\frac{1}{5} - {32}^\frac{1}{5} \right]}{5x}}\]
\[ = \frac{7}{5} \lim_{x \to 0} \frac{\frac{\left[ \left( 256 - 7x \right)^\frac{1}{8} - {256}^\frac{1}{8} \right]}{\left( 256 - 7x \right) - 256}}{\frac{\left[ \left( 5x + 32 \right)^\frac{1}{5} - {32}^\frac{1}{5} \right]}{5x + 32 - 32}}\]
\[ = \frac{7}{5} \times \frac{\frac{1}{8} \times \left( 256 \right)^{- \frac{7}{8}}}{\frac{1}{5} \times \left( 32 \right)^\frac{- 4}{5}}\]
\[ = \frac{7}{5} \times \frac{\frac{1}{8} \times 2^4}{\frac{1}{5} \times 2^7}\]
\[ = \frac{7}{64}\]
shaalaa.com
  या प्रश्नात किंवा उत्तरात काही त्रुटी आहे का?
पाठ 9: Continuity - Exercise 9.4 [पृष्ठ ४४]

APPEARS IN

आरडी शर्मा Mathematics [English] Class 12
पाठ 9 Continuity
Exercise 9.4 | Q 19 | पृष्ठ ४४

व्हिडिओ ट्यूटोरियलVIEW ALL [4]

संबंधित प्रश्‍न

Examine the continuity of the following function :

`{:(,,f(x)= x^2 -x+9,"for",x≤3),(,,=4x+3,"for",x>3):}}"at "x=3`


Examine the following function for continuity:

f(x) = | x – 5|


Discuss the continuity of the following functions at the indicated point(s): 

(ii) \[f\left( x \right) = \left\{ \begin{array}{l}x^2 \sin\left( \frac{1}{x} \right), & x \neq 0 \\ 0 , & x = 0\end{array}at x = 0 \right.\]


Discuss the continuity of the following functions at the indicated point(s): 

\[f\left( x \right) = \left\{ \begin{array}{l}\frac{2\left| x \right| + x^2}{x}, & x \neq 0 \\ 0 , & x = 0\end{array}at x = 0 \right.\]

Determine the value of the constant k so that the function

\[f\left( x \right) = \begin{cases}k x^2 , if & x \leq 2 \\ 3 , if & x > 2\end{cases}\text{is continuous at x} = 2 .\]


For what value of k is the function

\[f\left( x \right) = \begin{cases}\frac{\sin 2x}{x}, & x \neq 0 \\ k , & x = 0\end{cases}\]  continuous at x = 0?

 


For what value of k is the following function continuous at x = 2? 

\[f\left( x \right) = \begin{cases}2x + 1 ; & \text{ if } x < 2 \\ k ; & x = 2 \\ 3x - 1 ; & x > 2\end{cases}\]

Find the points of discontinuity, if any, of the following functions:  \[f\left( x \right) = \begin{cases}\left| x - 3 \right|, & \text{ if }  x \geq 1 \\ \frac{x^2}{4} - \frac{3x}{2} + \frac{13}{4}, & \text{ if }  x < 1\end{cases}\]


In the following, determine the value of constant involved in the definition so that the given function is continuou:   \[f\left( x \right) = \begin{cases}\frac{\sqrt{1 + px} - \sqrt{1 - px}}{x}, & \text{ if } - 1 \leq x < 0 \\ \frac{2x + 1}{x - 2} , & \text{ if }  0 \leq x \leq 1\end{cases}\]


Discuss the continuity of the function  \[f\left( x \right) = \begin{cases}2x - 1 , & \text { if }  x < 2 \\ \frac{3x}{2} , & \text{ if  } x \geq 2\end{cases}\]


Find f (0), so that  \[f\left( x \right) = \frac{x}{1 - \sqrt{1 - x}}\]  becomes continuous at x = 0.

 


Write the value of b for which \[f\left( x \right) = \begin{cases}5x - 4 & 0 < x \leq 1 \\ 4 x^2 + 3bx & 1 < x < 2\end{cases}\]  is continuous at x = 1.

 


If \[f\left( x \right) = \left| \log_{10} x \right|\] then at x = 1


The points of discontinuity of the function\[f\left( x \right) = \begin{cases}\frac{1}{5}\left( 2 x^2 + 3 \right) , & x \leq 1 \\ 6 - 5x , & 1 < x < 3 \\ x - 3 , & x \geq 3\end{cases}\text{ is } \left( are \right)\]  


Show that f(x) = |x − 2| is continuous but not differentiable at x = 2. 


Define differentiability of a function at a point.

 

Let \[f\left( x \right) = \left( x + \left| x \right| \right) \left| x \right|\]


Let f (x) = |x| and g (x) = |x3|, then


The function f (x) = sin−1 (cos x) is


If \[f\left( x \right) = \left| \log_e |x| \right|\] 


Let \[f\left( x \right) = \begin{cases}\frac{1}{\left| x \right|} & for \left| x \right| \geq 1 \\ a x^2 + b & for \left| x \right| < 1\end{cases}\] If f (x) is continuous and differentiable at any point, then

 

 

 


The function f (x) =  |cos x| is


If \[f\left( x \right) = \begin{cases}\frac{1}{1 + e^{1/x}} & , x \neq 0 \\ 0 & , x = 0\end{cases}\]  then f (x) is 


The set of points where the function f (x) given by f (x) = |x − 3| cos x is differentiable, is


Examine the continuity of f(x)=`x^2-x+9  "for"  x<=3`

=`4x+3  "for"  x>3,  "at"  x=3` 


Discuss the continuity of the function f at x = 0

If f(x) = `(2^(3x) - 1)/tanx`, for x ≠ 0

         = 1,   for x = 0


If the function f is continuous at x = 0

Where f(x) = 2`sqrt(x^3 + 1)` + a,  for x < 0,
= `x^3 + a + b,  for x > 0
and f (1) = 2, then find a and b.


Discuss the continuity of the function `f(x) = (3 - sqrt(2x + 7))/(x - 1)` for x ≠ 1

= `-1/3`   for x = 1, at x = 1


Show that the function f given by f(x) = `{{:(("e"^(1/x) - 1)/("e"^(1/x) + 1)",", "if"  x ≠ 0),(0",",  "if"  x = 0):}` is discontinuous at x = 0.


Examine the differentiability of the function f defined by
f(x) = `{{:(2x + 3",",  "if"  -3 ≤ x < - 2),(x + 1",",  "if"  -2 ≤ x < 0),(x + 2",",  "if"  0 ≤ x ≤ 1):}`


The number of points at which the function f(x) = `1/(x - [x])` is not continuous is ______.


f(x) = `{{:(|x|cos  1/x",", "if"  x ≠ 0),(0",", "if"  x = 0):}` at x = 0


f(x) = `{{:(("e"^(1/x))/(1 + "e"^(1/x))",", "if"  x ≠ 0),(0",", "if"  x = 0):}` at x = 0 


f(x) = |x| + |x − 1| at x = 1


Examine the differentiability of f, where f is defined by
f(x) = `{{:(1 + x",",  "if"  x ≤ 2),(5 - x",",  "if"  x > 2):}` at x = 2


Find the values of p and q so that f(x) = `{{:(x^2 + 3x + "p"",",  "if"  x ≤ 1),("q"x + 2",",  "if"  x > 1):}` is differentiable at x = 1


`lim_("x" -> 0) (2  "sin x - sin"  2 "x")/"x"^3` is equal to ____________.


Share
Notifications

Englishहिंदीमराठी


      Forgot password?
Use app×