Advertisements
Advertisements
प्रश्न
The value of f (0) so that the function
पर्याय
−1
1
26
none of these
उत्तर
none of these
For \[f\left( x \right)\] to be continuous at x = 0, we must have
\[ \Rightarrow f\left( 0 \right) = \lim_{x \to 0} \frac{{256}^\frac{1}{8} - \left( 256 - 7x \right)^\frac{1}{8}}{\left( 5x + 32 \right)^\frac{1}{5} - {32}^\frac{1}{5}}\]
\[ = - \lim_{x \to 0} \frac{\frac{\left[ \left( 256 - 7x \right)^\frac{1}{8} - {256}^\frac{1}{8} \right]}{x}}{\frac{\left[ \left( 5x + 32 \right)^\frac{1}{5} - {32}^\frac{1}{5} \right]}{x}}\]
\[ = \frac{- 7}{5} \lim_{x \to 0} \frac{\frac{\left[ \left( 256 - 7x \right)^\frac{1}{8} - {256}^\frac{1}{8} \right]}{7x}}{\frac{\left[ \left( 5x + 32 \right)^\frac{1}{5} - {32}^\frac{1}{5} \right]}{5x}}\]
\[ = \frac{7}{5} \lim_{x \to 0} \frac{\frac{\left[ \left( 256 - 7x \right)^\frac{1}{8} - {256}^\frac{1}{8} \right]}{\left( 256 - 7x \right) - 256}}{\frac{\left[ \left( 5x + 32 \right)^\frac{1}{5} - {32}^\frac{1}{5} \right]}{5x + 32 - 32}}\]
\[ = \frac{7}{5} \times \frac{\frac{1}{8} \times \left( 256 \right)^{- \frac{7}{8}}}{\frac{1}{5} \times \left( 32 \right)^\frac{- 4}{5}}\]
\[ = \frac{7}{5} \times \frac{\frac{1}{8} \times 2^4}{\frac{1}{5} \times 2^7}\]
\[ = \frac{7}{64}\]
APPEARS IN
संबंधित प्रश्न
Examine the continuity of the following function :
`{:(,,f(x)= x^2 -x+9,"for",x≤3),(,,=4x+3,"for",x>3):}}"at "x=3`
Examine the following function for continuity:
f(x) = | x – 5|
Discuss the continuity of the following functions at the indicated point(s):
(ii) \[f\left( x \right) = \left\{ \begin{array}{l}x^2 \sin\left( \frac{1}{x} \right), & x \neq 0 \\ 0 , & x = 0\end{array}at x = 0 \right.\]
Discuss the continuity of the following functions at the indicated point(s):
Determine the value of the constant k so that the function
\[f\left( x \right) = \begin{cases}k x^2 , if & x \leq 2 \\ 3 , if & x > 2\end{cases}\text{is continuous at x} = 2 .\]
For what value of k is the function
For what value of k is the following function continuous at x = 2?
Find the points of discontinuity, if any, of the following functions: \[f\left( x \right) = \begin{cases}\left| x - 3 \right|, & \text{ if } x \geq 1 \\ \frac{x^2}{4} - \frac{3x}{2} + \frac{13}{4}, & \text{ if } x < 1\end{cases}\]
In the following, determine the value of constant involved in the definition so that the given function is continuou: \[f\left( x \right) = \begin{cases}\frac{\sqrt{1 + px} - \sqrt{1 - px}}{x}, & \text{ if } - 1 \leq x < 0 \\ \frac{2x + 1}{x - 2} , & \text{ if } 0 \leq x \leq 1\end{cases}\]
Discuss the continuity of the function \[f\left( x \right) = \begin{cases}2x - 1 , & \text { if } x < 2 \\ \frac{3x}{2} , & \text{ if } x \geq 2\end{cases}\]
Find f (0), so that \[f\left( x \right) = \frac{x}{1 - \sqrt{1 - x}}\] becomes continuous at x = 0.
Write the value of b for which \[f\left( x \right) = \begin{cases}5x - 4 & 0 < x \leq 1 \\ 4 x^2 + 3bx & 1 < x < 2\end{cases}\] is continuous at x = 1.
If \[f\left( x \right) = \left| \log_{10} x \right|\] then at x = 1
The points of discontinuity of the function\[f\left( x \right) = \begin{cases}\frac{1}{5}\left( 2 x^2 + 3 \right) , & x \leq 1 \\ 6 - 5x , & 1 < x < 3 \\ x - 3 , & x \geq 3\end{cases}\text{ is } \left( are \right)\]
Show that f(x) = |x − 2| is continuous but not differentiable at x = 2.
Define differentiability of a function at a point.
Let \[f\left( x \right) = \left( x + \left| x \right| \right) \left| x \right|\]
Let f (x) = |x| and g (x) = |x3|, then
The function f (x) = sin−1 (cos x) is
If \[f\left( x \right) = \left| \log_e |x| \right|\]
Let \[f\left( x \right) = \begin{cases}\frac{1}{\left| x \right|} & for \left| x \right| \geq 1 \\ a x^2 + b & for \left| x \right| < 1\end{cases}\] If f (x) is continuous and differentiable at any point, then
The function f (x) = |cos x| is
If \[f\left( x \right) = \begin{cases}\frac{1}{1 + e^{1/x}} & , x \neq 0 \\ 0 & , x = 0\end{cases}\] then f (x) is
The set of points where the function f (x) given by f (x) = |x − 3| cos x is differentiable, is
Examine the continuity of f(x)=`x^2-x+9 "for" x<=3`
=`4x+3 "for" x>3, "at" x=3`
Discuss the continuity of the function f at x = 0
If f(x) = `(2^(3x) - 1)/tanx`, for x ≠ 0
= 1, for x = 0
If the function f is continuous at x = 0
Where f(x) = 2`sqrt(x^3 + 1)` + a, for x < 0,
= `x^3 + a + b, for x > 0
and f (1) = 2, then find a and b.
Discuss the continuity of the function `f(x) = (3 - sqrt(2x + 7))/(x - 1)` for x ≠ 1
= `-1/3` for x = 1, at x = 1
Show that the function f given by f(x) = `{{:(("e"^(1/x) - 1)/("e"^(1/x) + 1)",", "if" x ≠ 0),(0",", "if" x = 0):}` is discontinuous at x = 0.
Examine the differentiability of the function f defined by
f(x) = `{{:(2x + 3",", "if" -3 ≤ x < - 2),(x + 1",", "if" -2 ≤ x < 0),(x + 2",", "if" 0 ≤ x ≤ 1):}`
The number of points at which the function f(x) = `1/(x - [x])` is not continuous is ______.
f(x) = `{{:(|x|cos 1/x",", "if" x ≠ 0),(0",", "if" x = 0):}` at x = 0
f(x) = `{{:(("e"^(1/x))/(1 + "e"^(1/x))",", "if" x ≠ 0),(0",", "if" x = 0):}` at x = 0
f(x) = |x| + |x − 1| at x = 1
Examine the differentiability of f, where f is defined by
f(x) = `{{:(1 + x",", "if" x ≤ 2),(5 - x",", "if" x > 2):}` at x = 2
Find the values of p and q so that f(x) = `{{:(x^2 + 3x + "p"",", "if" x ≤ 1),("q"x + 2",", "if" x > 1):}` is differentiable at x = 1
`lim_("x" -> 0) (2 "sin x - sin" 2 "x")/"x"^3` is equal to ____________.