Advertisements
Advertisements
प्रश्न
The set of points where the function f (x) given by f (x) = |x − 3| cos x is differentiable, is
पर्याय
R
R − {3}
(0, ∞)
none of these
उत्तर
(b)
\[\left(\text { LHD at x } = 3 \right) = \lim_{x \to 3^-} \frac{f\left( x \right) - f\left( 3 \right)}{x - 3}\]
\[\left( \text { LHD at x = 3 } \right) = \lim_{h \to 0} \frac{f\left( 3 - h \right) - f\left( 3 \right)}{3 - h - 3}\]
\[\left( \text { LHD at x = 3 } \right) = \lim_{h \to 0} \frac{f\left( 3 - h \right) - f\left( 3 \right)}{- h}\]
\[\left( \text { LHD at x = 3} \right) = \lim_{h \to 0} \frac{\left| 3 - h - 3 \right|\cos\left( 3 - h \right) - f\left( 3 \right)}{- h}\]
\[\left(\text{ LHD at x } = 3 \right) = \lim_{h \to 0} \frac{h\cos\left( 3 - h \right) - 0}{- h} = - \cos3\]
\[\left( \text { RHD at x } = 3 \right) = \lim_{x \to 3^+} \frac{f\left( x \right) - f\left( 3 \right)}{x - 3}\]
\[\left( \text { RHD at x = 3 } \right) = \lim_{h \to 0} \frac{f\left( 3 + h \right) - f\left( 3 \right)}{3 + h - 3}\]
\[\left( \text { RHD at x } = 3 \right) = \lim_{h \to 0} \frac{f\left( 3 + h \right) - f\left( 3 \right)}{h}\]
\[\left( \text { RHD at x = 3 } \right) = \lim_{h \to 0} \frac{\left| 3 + h - 3 \right|\cos\left( 3 + h \right) - f\left( 3 \right)}{h}\]
\[\left( \text { RHD at x } = 3 \right) = \lim_{h \to 0} \frac{h\cos\left( 3 + h \right) - 0}{h} = \cos3\]
So, f(x) is not differentiable at x = 3.
Also, f(x) is differentiable at all other points because both modulus and cosine functions are differentiable and the product of two differentiable function is differentiable.
APPEARS IN
संबंधित प्रश्न
Examine the continuity of the following function :
`{:(,,f(x)= x^2 -x+9,"for",x≤3),(,,=4x+3,"for",x>3):}}"at "x=3`
If \[f\left( x \right) = \begin{cases}e^{1/x} , if & x \neq 0 \\ 1 , if & x = 0\end{cases}\] find whether f is continuous at x = 0.
Let \[f\left( x \right) = \begin{cases}\frac{1 - \cos x}{x^2}, when & x \neq 0 \\ 1 , when & x = 0\end{cases}\] Show that f(x) is discontinuous at x = 0.
Discuss the continuity of the following functions at the indicated point(s):
(i) \[f\left( x \right) = \begin{cases}\left| x \right| \cos\left( \frac{1}{x} \right), & x \neq 0 \\ 0 , & x = 0\end{cases}at x = 0\]
Discuss the continuity of the following functions at the indicated point(s): (iv) \[f\left( x \right) = \left\{ \begin{array}{l}\frac{e^x - 1}{\log(1 + 2x)}, if & x \neq a \\ 7 , if & x = 0\end{array}at x = 0 \right.\]
Discuss the continuity of the following functions at the indicated point(s):
Discuss the continuity of the function f(x) at the point x = 0, where \[f\left( x \right) = \begin{cases}x, x > 0 \\ 1, x = 0 \\ - x, x < 0\end{cases}\]
Discuss the continuity of the function f(x) at the point x = 1/2, where \[f\left( x \right) = \begin{cases}x, 0 \leq x < \frac{1}{2} \\ \frac{1}{2}, x = \frac{1}{2} \\ 1 - x, \frac{1}{2} < x \leq 1\end{cases}\]
Determine the value of the constant k so that the function
\[f\left( x \right) = \left\{ \begin{array}{l}\frac{x^2 - 3x + 2}{x - 1}, if & x \neq 1 \\ k , if & x = 1\end{array}\text{is continuous at x} = 1 \right.\]
If \[f\left( x \right) = \begin{cases}\frac{x - 4}{\left| x - 4 \right|} + a, \text{ if } & x < 4 \\ a + b , \text{ if } & x = 4 \\ \frac{x - 4}{\left| x - 4 \right|} + b, \text{ if } & x > 4\end{cases}\] is continuous at x = 4, find a, b.
If \[f\left( x \right) = \begin{cases}\frac{2^{x + 2} - 16}{4^x - 16}, \text{ if } & x \neq 2 \\ k , \text{ if } & x = 2\end{cases}\] is continuous at x = 2, find k.
In each of the following, find the value of the constant k so that the given function is continuous at the indicated point; \[f\left( x \right) = \begin{cases}\frac{x^2 - 25}{x - 5}, & x \neq 5 \\ k , & x = 5\end{cases}\]at x = 5
Discuss the continuity of the f(x) at the indicated points:
(i) f(x) = | x | + | x − 1 | at x = 0, 1.
Find the values of a and b so that the function f(x) defined by \[f\left( x \right) = \begin{cases}x + a\sqrt{2}\sin x , & \text{ if }0 \leq x < \pi/4 \\ 2x \cot x + b , & \text{ if } \pi/4 \leq x < \pi/2 \\ a \cos 2x - b \sin x, & \text{ if } \pi/2 \leq x \leq \pi\end{cases}\]becomes continuous on [0, π].
Find all the points of discontinuity of f defined by f (x) = | x |− | x + 1 |.
If \[f\left( x \right) = \begin{cases}\frac{x^2 - 16}{x - 4}, & \text{ if } x \neq 4 \\ k , & \text{ if } x = 4\end{cases}\] is continuous at x = 4, find k.
The function
The value of k which makes \[f\left( x \right) = \begin{cases}\sin\frac{1}{x}, & x \neq 0 \\ k , & x = 0\end{cases}\] continuous at x = 0, is
Show that the function
(i) differentiable at x = 0, if m > 1
(ii) continuous but not differentiable at x = 0, if 0 < m < 1
(iii) neither continuous nor differentiable, if m ≤ 0
Write an example of a function which is everywhere continuous but fails to differentiable exactly at five points.
Write the points where f (x) = |loge x| is not differentiable.
Let f (x) = |x| and g (x) = |x3|, then
If f (x) = |3 − x| + (3 + x), where (x) denotes the least integer greater than or equal to x, then f (x) is
Find the value of k for which the function f (x ) = \[\binom{\frac{x^2 + 3x - 10}{x - 2}, x \neq 2}{ k , x^2 }\] is continuous at x = 2 .
`f(x)=(x^2-9)/(x - 3)` is not defined at x = 3. what value should be assigned to f(3) for continuity of f(x) at = 3?
Discuss the continuity of the function f at x = 0
If f(x) = `(2^(3x) - 1)/tanx`, for x ≠ 0
= 1, for x = 0
If f is continuous at x = 0, then find f (0).
Where f(x) = `(3^"sin x" - 1)^2/("x" . "log" ("x" + 1)) , "x" ≠ 0`
The total cost C for producing x units is Rs (x2 + 60x + 50) and the price is Rs (180 - x) per unit. For how many units the profit is maximum.
Examine the differentiability of the function f defined by
f(x) = `{{:(2x + 3",", "if" -3 ≤ x < - 2),(x + 1",", "if" -2 ≤ x < 0),(x + 2",", "if" 0 ≤ x ≤ 1):}`
The function given by f (x) = tanx is discontinuous on the set ______.
For continuity, at x = a, each of `lim_(x -> "a"^+) "f"(x)` and `lim_(x -> "a"^-) "f"(x)` is equal to f(a).
f(x) = `{{:(("e"^(1/x))/(1 + "e"^(1/x))",", "if" x ≠ 0),(0",", "if" x = 0):}` at x = 0
Examine the differentiability of f, where f is defined by
f(x) = `{{:(x^2 sin 1/x",", "if" x ≠ 0),(0",", "if" x = 0):}` at x = 0
If f is continuous on its domain D, then |f| is also continuous on D.
Write the number of points where f(x) = |x + 2| + |x - 3| is not differentiable.
If the following function is continuous at x = 2 then the value of k will be ______.
f(x) = `{{:(2x + 1",", if x < 2),( k",", if x = 2),(3x - 1",", if x > 2):}`