Advertisements
Advertisements
प्रश्न
In the following, determine the value of constant involved in the definition so that the given function is continuou: \[f\left( x \right) = \begin{cases}\frac{\sqrt{1 + px} - \sqrt{1 - px}}{x}, & \text{ if } - 1 \leq x < 0 \\ \frac{2x + 1}{x - 2} , & \text{ if } 0 \leq x \leq 1\end{cases}\]
उत्तर
Given:
\[ \Rightarrow \lim_{h \to 0} \left( \frac{\sqrt{1 - ph} - \sqrt{1 + ph}}{- h} \right) = \lim_{h \to 0} \left( \frac{2h + 1}{h - 2} \right)\]
\[ \Rightarrow \lim_{h \to 0} \left( \frac{\left( \sqrt{1 - ph} - \sqrt{1 + ph} \right)\left( \sqrt{1 - ph} + \sqrt{1 + ph} \right)}{- h\left( \sqrt{1 - ph} + \sqrt{1 + ph} \right)} \right) = \lim_{h \to 0} \left( \frac{2h + 1}{h - 2} \right)\]
\[ \Rightarrow \lim_{h \to 0} \left( \frac{\left( 1 - ph - 1 - ph \right)}{- h\left( \sqrt{1 - ph} + \sqrt{1 + ph} \right)} \right) = \lim_{h \to 0} \left( \frac{2h + 1}{h - 2} \right)\]
\[ \Rightarrow \lim_{h \to 0} \left( \frac{\left( - 2ph \right)}{- h\left( \sqrt{1 - ph} + \sqrt{1 + ph} \right)} \right) = \lim_{h \to 0} \left( \frac{2h + 1}{h - 2} \right)\]
\[ \Rightarrow \lim_{h \to 0} \left( \frac{\left( 2p \right)}{\left( \sqrt{1 - ph} + \sqrt{1 + ph} \right)} \right) = \lim_{h \to 0} \left( \frac{2h + 1}{h - 2} \right)\]
\[ \Rightarrow \left( \frac{\left( 2p \right)}{\left( 2 \right)} \right) = \left( \frac{1}{- 2} \right)\]
\[ \Rightarrow p = \frac{- 1}{2}\]
APPEARS IN
संबंधित प्रश्न
Find the value of 'k' if the function
`f(X)=(tan7x)/(2x) , "for " x != 0 `
`=k`, for x=0
is continuos at x=0
If 'f' is continuous at x = 0, then find f(0).
`f(x)=(15^x-3^x-5^x+1)/(xtanx) , x!=0`
Discuss the continuity of the function f(x) at the point x = 0, where \[f\left( x \right) = \begin{cases}x, x > 0 \\ 1, x = 0 \\ - x, x < 0\end{cases}\]
If \[f\left( x \right) = \begin{cases}\frac{1 - \cos kx}{x \sin x}, & x \neq 0 \\ \frac{1}{2} , & x = 0\end{cases}\text{is continuous at x} = 0, \text{ find } k .\]
Discuss the continuity of the f(x) at the indicated points:
(i) f(x) = | x | + | x − 1 | at x = 0, 1.
Discuss the continuity of the f(x) at the indicated points: f(x) = | x − 1 | + | x + 1 | at x = −1, 1.
If the functions f(x), defined below is continuous at x = 0, find the value of k. \[f\left( x \right) = \begin{cases}\frac{1 - \cos 2x}{2 x^2}, & x < 0 \\ k , & x = 0 \\ \frac{x}{\left| x \right|} , & x > 0\end{cases}\]
Find the points of discontinuity, if any, of the following functions: \[f\left( x \right) = \begin{cases}\left| x - 3 \right|, & \text{ if } x \geq 1 \\ \frac{x^2}{4} - \frac{3x}{2} + \frac{13}{4}, & \text{ if } x < 1\end{cases}\]
Find all point of discontinuity of the function
If \[f\left( x \right) = \left| \log_{10} x \right|\] then at x = 1
The function \[f\left( x \right) = \begin{cases}\frac{e^{1/x} - 1}{e^{1/x} + 1}, & x \neq 0 \\ 0 , & x = 0\end{cases}\]
The value of f (0), so that the function
Show that \[f\left( x \right) =\]`{(12x, -,13, if , x≤3),(2x^2, +,5, if x,>3):}` is differentiable at x = 3. Also, find f'(3).
Show that the function
\[f\left( x \right) = \begin{cases}\left| 2x - 3 \right| \left[ x \right], & x \geq 1 \\ \sin \left( \frac{\pi x}{2} \right), & x < 1\end{cases}\] is continuous but not differentiable at x = 1.
Discuss the continuity and differentiability of f (x) = e|x| .
Write the points where f (x) = |loge x| is not differentiable.
Write the points of non-differentiability of
The function f (x) = sin−1 (cos x) is
Let \[f\left( x \right) = \begin{cases}\frac{1}{\left| x \right|} & for \left| x \right| \geq 1 \\ a x^2 + b & for \left| x \right| < 1\end{cases}\] If f (x) is continuous and differentiable at any point, then
The set of points where the function f (x) given by f (x) = |x − 3| cos x is differentiable, is
Let \[f\left( x \right) = \begin{cases}1 , & x \leq - 1 \\ \left| x \right|, & - 1 < x < 1 \\ 0 , & x \geq 1\end{cases}\] Then, f is
Find k, if the function f is continuous at x = 0, where
`f(x)=[(e^x - 1)(sinx)]/x^2`, for x ≠ 0
= k , for x = 0
Find the points of discontinuity , if any for the function : f(x) = `(x^2 - 9)/(sinx - 9)`
If f(x) = `(e^(2x) - 1)/(ax)` . for x < 0 , a ≠ 0
= 1. for x = 0
= `(log(1 + 7x))/(bx)`. for x > 0 , b ≠ 0
is continuous at x = 0 . then find a and b
Examine the continuity off at x = 1, if
f (x) = 5x - 3 , for 0 ≤ x ≤ 1
= x2 + 1 , for 1 ≤ x ≤ 2
Find `dy/dx if y = tan^-1 ((6x)/[ 1 - 5x^2])`
If the function f is continuous at x = I, then find f(1), where f(x) = `(x^2 - 3x + 2)/(x - 1),` for x ≠ 1
If the function f is continuous at x = 2, then find 'k' where
f(x) = `(x^2 + 5)/(x - 1),` for 1< x ≤ 2
= kx + 1 , for x > 2
Discuss the continuity of the function f at x = 0, where
f(x) = `(5^x + 5^-x - 2)/(cos2x - cos6x),` for x ≠ 0
= `1/8(log 5)^2,` for x = 0
f(x) = `{{:(3x + 5",", "if" x ≥ 2),(x^2",", "if" x < 2):}` at x = 2
f(x) = `{{:(x^2/2",", "if" 0 ≤ x ≤ 1),(2x^2 - 3x + 3/2",", "if" 1 < x ≤ 2):}` at x = 1
f(x) = `{{:((sqrt(1 + "k"x) - sqrt(1 - "k"x))/x",", "if" -1 ≤ x < 0),((2x + 1)/(x - 1)",", "if" 0 ≤ x ≤ 1):}` at x = 0
Given the function f(x) = `1/(x + 2)`. Find the points of discontinuity of the composite function y = f(f(x))
The set of points where the function f given by f(x) = |2x − 1| sinx is differentiable is ______.
If f(x) = `x^2 sin 1/x` where x ≠ 0, then the value of the function f at x = 0, so that the function is continuous at x = 0, is ______.
An example of a function which is continuous everywhere but fails to be differentiable exactly at two points is ______.