Advertisements
Advertisements
प्रश्न
Rolle’s theorem is applicable for the function f(x) = |x – 1| in [0, 2].
पर्याय
True
False
उत्तर
This statement is False.
Explanation:
Given that f(x) = x – 1 in [0, 2]
We know that modulus function is not differentiable.
APPEARS IN
संबंधित प्रश्न
Verify Lagrange’s mean value theorem for the function f(x)=x+1/x, x ∈ [1, 3]
Verify Rolle's theorem for the function
f(x)=x2-5x+9 on [1,4]
Check whether the conditions of Rolle’s theorem are satisfied by the function
f (x) = (x - 1) (x - 2) (x - 3), x ∈ [1, 3]
Verify Rolle’s theorem for the function f (x) = x2 + 2x – 8, x ∈ [– 4, 2].
Examine if Rolle’s Theorem is applicable to any of the following functions. Can you say some thing about the converse of Rolle’s Theorem from these examples?
f (x) = [x] for x ∈ [5, 9]
Examine if Rolle’s Theorem is applicable to any of the following functions. Can you say some thing about the converse of Rolle’s Theorem from these examples?
f (x) = x2 – 1 for x ∈ [1, 2]
Verify Mean Value Theorem, if f (x) = x2 – 4x – 3 in the interval [a, b], where a = 1 and b = 4.
Verify Lagrange's Mean Value Theorem for the following function:
`f(x ) = 2 sin x + sin 2x " on " [0, pi]`
f(x) = (x-1)(x-2)(x-3) , x ε[0,4], find if 'c' LMVT can be applied
Verify the Lagrange’s mean value theorem for the function:
`f(x)=x + 1/x ` in the interval [1, 3]
Verify Langrange’s mean value theorem for the function:
f(x) = x (1 – log x) and find the value of c in the interval [1, 2].
Verify Rolle’s Theorem for the function f(x) = ex (sin x – cos x) on `[ (π)/(4), (5π)/(4)]`.
Verify Mean value theorem for the function f(x) = 2sin x + sin 2x on [0, π].
Verify Rolle’s theorem for the function, f(x) = sin 2x in `[0, pi/2]`.
Verify mean value theorem for the function f(x) = (x – 3)(x – 6)(x – 9) in [3, 5].
The value of c in Rolle’s Theorem for the function f(x) = e x sinx, x ∈ π [0, π] is ______.
The value of c in Mean value theorem for the function f(x) = x(x – 2), x ∈ [1, 2] is ______.
f(x) = `sin^4x + cos^4x` in `[0, pi/2]`
f(x) = `x(x + 3)e^((–x)/2)` in [–3, 0]
f(x) = `sqrt(4 - x^2)` in [– 2, 2]
Find the points on the curve y = (cosx – 1) in [0, 2π], where the tangent is parallel to x-axis
f(x) = `sqrt(25 - x^2)` in [1, 5]
For the function f(x) = `x + 1/x`, x ∈ [1, 3], the value of c for mean value theorem is ______.
If x2 + y2 = 1, then ____________.
`lim_(x→0) sqrt(1 - cosx)/(sqrt(2)x)` is ______.