मराठी

Verify Mean Value Theorem, If F (X) = X2 – 4x – 3 in the Interval [A, B], Where a = 1 and B = 4. - Mathematics

Advertisements
Advertisements

प्रश्न

Verify Mean Value Theorem, if f (x) = x2 – 4x – 3 in the interval [a, b], where a = 1 and b = 4.

उत्तर

The given function is f (x) = x2 – 4x – 3

f, being a polynomial function, is continuous in [1, 4] and is differentiable in (1, 4) whose derivative is 2x − 4.

Hence, Mean Value Theorem is verified for the given function.

shaalaa.com
  या प्रश्नात किंवा उत्तरात काही त्रुटी आहे का?
पाठ 5: Continuity and Differentiability - Exercise 5.8 [पृष्ठ १८६]

APPEARS IN

एनसीईआरटी Mathematics [English] Class 12
पाठ 5 Continuity and Differentiability
Exercise 5.8 | Q 4 | पृष्ठ १८६

व्हिडिओ ट्यूटोरियलVIEW ALL [3]

संबंधित प्रश्‍न

Verify Rolle's theorem for the function  

f(x)=x2-5x+9 on [1,4]


Verify Rolle’s theorem for the function f (x) = x2 + 2x – 8, x ∈ [– 4, 2].


Examine if Rolle’s Theorem is applicable to any of the following functions. Can you say some thing about the converse of Rolle’s Theorem from these examples?

f (x) = x2 – 1 for x ∈ [1, 2]


Examine the applicability of Mean Value Theorem for all three functions given in the above exercise 2. 


Verify Rolle’s theorem for the following function:

f (x) = x2 - 4x + 10 on [0, 4]


Verify Lagrange's Mean Value Theorem for the following function:

`f(x ) = 2 sin x +  sin 2x " on " [0, pi]`


f(x) = (x-1)(x-2)(x-3) , x ε[0,4], find if 'c' LMVT can be applied


Verify Mean value theorem for the function f(x) = 2sin x + sin 2x on [0, π].


Verify mean value theorem for the function f(x) = (x – 3)(x – 6)(x – 9) in [3, 5].


The value of c in Rolle’s Theorem for the function f(x) = e x sinx, x ∈ π [0, π] is ______.


f(x) = x(x – 1)2 in [0, 1]


f(x) = `sin^4x + cos^4x` in `[0, pi/2]`


f(x) = `sqrt(4 - x^2)` in [– 2, 2]


Discuss the applicability of Rolle’s theorem on the function given by f(x) = `{{:(x^2 + 1",",  "if"  0 ≤ x ≤ 1),(3 - x",",  "if"  1 ≤ x ≤ 2):}`


Using Rolle’s theorem, find the point on the curve y = x(x – 4), x ∈ [0, 4], where the tangent is parallel to x-axis


f(x) = `1/(4x - 1)` in [1, 4]


f(x) = x3 – 2x2 – x + 3 in [0, 1]


f(x) = sinx – sin2x in [0, π]


f(x) = `sqrt(25 - x^2)` in [1, 5]


Find a point on the curve y = (x – 3)2, where the tangent is parallel to the chord joining the points (3, 0) and (4, 1)


Using mean value theorem, prove that there is a point on the curve y = 2x2 – 5x + 3 between the points A(1, 0) and B(2, 1), where tangent is parallel to the chord AB. Also, find that point


The value of c in Rolle’s theorem for the function f(x) = x3 – 3x in the interval `[0, sqrt(3)]` is ______.


For the function f(x) = `x + 1/x`, x ∈ [1, 3], the value of c for mean value theorem is ______.


The value of c in Rolle’s theorem for the function, f(x) = sin 2x in `[0, pi/2]` is ____________.


The value of c in mean value theorem for the function f(x) = (x - 3)(x - 6)(x - 9) in [3, 5] is ____________.


If A, G, H are arithmetic, geometric and harmonic means between a and b respectively, then A, G, H are


Value of' 'c' of the mean value theorem for the function `f(x) = x(x - 2)`, when a = 0, b = 3/2, is


Let a function f: R→R be defined as

f(x) = `{(sinx - e^x",", if x < 0),(a + [-x]",", if 0 < x < 1),(2x - b",", if x > 1):}`

where [x] is the greatest integer less than or equal to x. If f is continuous on R, then (a + b) is equal to ______.


`lim_(x→0) sqrt(1 - cosx)/(sqrt(2)x)` is ______.


Share
Notifications

Englishहिंदीमराठी


      Forgot password?
Use app×
Our website is made possible by ad-free subscriptions or displaying online advertisements to our visitors.
If you don't like ads you can support us by buying an ad-free subscription or please consider supporting us by disabling your ad blocker. Thank you.