Advertisements
Advertisements
प्रश्न
f(x) = `sin^4x + cos^4x` in `[0, pi/2]`
उत्तर
We have, f(x) = `sin^4x + cos^4x` in `[0, pi/2]`
We know that sin x and cos x are conditions and differentiable
∴ sin4x and cos4x and hence sin4x + cos4x is continuous and differentiable
Now f(0) = 0 + 1 = 1 and `"f"(pi/2)` = 1 + 0 = 1
⇒ f(0) = `"f"(pi/2)`
So, conditions of Rolle's theorem are satisfied.
Hence, there exists atleast one `"c" ∈ (0, pi/2)` such that f'(c) = 0
∴ `4sin^3"c" cos "c" - 4cos^3"c" sin"c"` = 0
⇒ `4sin"c" cos"c" (sin^2"c" - cos^2"c")` = 0
⇒ `4sin"c" cos"c"(-cos 2"c")` = 0
⇒ `-2 sin 2"c" * cos 2"c"` = 0
⇒ sin 4c = 0
⇒ 4c = π
⇒ c = `pi/4 ∈ (0, pi/2)`.
Hence, Rolle's theorem has been verified.
APPEARS IN
संबंधित प्रश्न
Examine if Rolle’s Theorem is applicable to any of the following functions. Can you say some thing about the converse of Rolle’s Theorem from these examples?
f (x) = [x] for x ∈ [– 2, 2]
Examine if Rolle’s Theorem is applicable to any of the following functions. Can you say some thing about the converse of Rolle’s Theorem from these examples?
f (x) = x2 – 1 for x ∈ [1, 2]
Verify Mean Value Theorem, if f (x) = x3 – 5x2 – 3x in the interval [a, b], where a = 1 and b = 3. Find all c ∈ (1, 3) for which f ′(c) = 0.
Verify Rolle’s theorem for the following function:
`f(x) = e^(-x) sinx " on" [0, pi]`
Verify Langrange’s mean value theorem for the function:
f(x) = x (1 – log x) and find the value of c in the interval [1, 2].
The value of c in Rolle’s Theorem for the function f(x) = e x sinx, x ∈ π [0, π] is ______.
f(x) = `x(x + 3)e^((–x)/2)` in [–3, 0]
f(x) = `sqrt(4 - x^2)` in [– 2, 2]
Find the points on the curve y = (cosx – 1) in [0, 2π], where the tangent is parallel to x-axis
Using Rolle’s theorem, find the point on the curve y = x(x – 4), x ∈ [0, 4], where the tangent is parallel to x-axis
f(x) = `1/(4x - 1)` in [1, 4]
f(x) = x3 – 2x2 – x + 3 in [0, 1]
f(x) = sinx – sin2x in [0, π]
Find a point on the curve y = (x – 3)2, where the tangent is parallel to the chord joining the points (3, 0) and (4, 1)
Using mean value theorem, prove that there is a point on the curve y = 2x2 – 5x + 3 between the points A(1, 0) and B(2, 1), where tangent is parallel to the chord AB. Also, find that point
The value of c in Rolle’s theorem for the function f(x) = x3 – 3x in the interval `[0, sqrt(3)]` is ______.
For the function f(x) = `x + 1/x`, x ∈ [1, 3], the value of c for mean value theorem is ______.
Rolle’s theorem is applicable for the function f(x) = |x – 1| in [0, 2].
If x2 + y2 = 1, then ____________.
The value of c in Rolle’s theorem for the function, f(x) = sin 2x in `[0, pi/2]` is ____________.
A value of c for which the Mean value theorem holds for the function f(x) = logex on the interval [1, 3] is ____________.
Value of' 'c' of the mean value theorem for the function `f(x) = x(x - 2)`, when a = 0, b = 3/2, is
Rolle's Theorem holds for the function x3 + bx2 + cx, 1 ≤ x ≤ 2 at the point `4/3`, the value of b and c are
Let a function f: R→R be defined as
f(x) = `{(sinx - e^x",", if x < 0),(a + [-x]",", if 0 < x < 1),(2x - b",", if x > 1):}`
where [x] is the greatest integer less than or equal to x. If f is continuous on R, then (a + b) is equal to ______.
`lim_(x→0) sqrt(1 - cosx)/(sqrt(2)x)` is ______.
Let f(1) = –2 and f'(x) ≥ 4.2 for 1 ≤ x ≤ 6. The possible value of f(6) lies in the interval ______.