मराठी

F(x) = x3 – 2x2 – x + 3 in [0, 1] - Mathematics

Advertisements
Advertisements

प्रश्न

f(x) = x3 – 2x2 – x + 3 in [0, 1]

बेरीज

उत्तर

We have, f(x) = x3 – 2x2 – x + 3 in [0, 1]

Since, f(x) is a polynomial function it is continuous in [0, 1] and differentiable in (0, 1)

Thus, conditions of mean value theorem are satisfied.

Hence, there exists a real number c ∈ (0, 1) such that

f'(c) = `("f"(1) - "f"(0))/(1 - 0)`

⇒ 3c2 – 4c – 1 = `([1 - 2 - 1 + 3] - [0 + 3])/(1 - 0)`

⇒ 3c2 – 4c – 1 = –2

⇒ 3c2 – 4c + 1 = 0

⇒ (3c – 1)(c – 1) = 0

⇒ c = `1/3 ∈ (0, 1)`

Hence, the mean value theorem has been verified.

shaalaa.com
  या प्रश्नात किंवा उत्तरात काही त्रुटी आहे का?
पाठ 5: Continuity And Differentiability - Exercise [पृष्ठ ११२]

APPEARS IN

एनसीईआरटी एक्झांप्लर Mathematics [English] Class 12
पाठ 5 Continuity And Differentiability
Exercise | Q 74 | पृष्ठ ११२

व्हिडिओ ट्यूटोरियलVIEW ALL [3]

संबंधित प्रश्‍न

Examine if Rolle’s Theorem is applicable to any of the following functions. Can you say some thing about the converse of Rolle’s Theorem from these examples?

f (x) = x2 – 1 for x ∈ [1, 2]


Examine the applicability of Mean Value Theorem for all three functions given in the above exercise 2. 


f(x) = (x-1)(x-2)(x-3) , x ε[0,4], find if 'c' LMVT can be applied


Verify the Lagrange’s mean value theorem for the function: 
`f(x)=x + 1/x ` in the interval [1, 3]


Verify Langrange’s mean value theorem for the function:

f(x) = x (1 – log x) and find the value of  c in the interval [1, 2].


Verify Rolle’s Theorem for the function f(x) = ex (sin x – cos x) on `[ (π)/(4), (5π)/(4)]`.


Verify Mean value theorem for the function f(x) = 2sin x + sin 2x on [0, π].


The value of c in Mean value theorem for the function f(x) = x(x – 2), x ∈ [1, 2] is ______.


f(x) = `sin^4x + cos^4x` in `[0, pi/2]`


f(x) = log(x2 + 2) – log3 in [–1, 1]


f(x) = `x(x + 3)e^((–x)/2)` in [–3, 0]


Find the points on the curve y = (cosx – 1) in [0, 2π], where the tangent is parallel to x-axis


Using Rolle’s theorem, find the point on the curve y = x(x – 4), x ∈ [0, 4], where the tangent is parallel to x-axis


f(x) = `1/(4x - 1)` in [1, 4]


f(x) = sinx – sin2x in [0, π]


f(x) = `sqrt(25 - x^2)` in [1, 5]


Find a point on the curve y = (x – 3)2, where the tangent is parallel to the chord joining the points (3, 0) and (4, 1)


The value of c in Rolle’s theorem for the function f(x) = x3 – 3x in the interval `[0, sqrt(3)]` is ______.


Rolle’s theorem is applicable for the function f(x) = |x – 1| in [0, 2].


The value of c in Rolle’s theorem for the function, f(x) = sin 2x in `[0, pi/2]` is ____________.


A value of c for which the Mean value theorem holds for the function f(x) = logex on the interval [1, 3] is ____________.


Value of' 'c' of the mean value theorem for the function `f(x) = x(x - 2)`, when a = 0, b = 3/2, is


Let a function f: R→R be defined as

f(x) = `{(sinx - e^x",", if x < 0),(a + [-x]",", if 0 < x < 1),(2x - b",", if x > 1):}`

where [x] is the greatest integer less than or equal to x. If f is continuous on R, then (a + b) is equal to ______.


P(x) be a polynomial satisfying P(x) – 2P'(x) = 3x3 – 27x2 + 38x + 1.

If function

f(x) = `{{:((P^n(x) + 18)/6, x ≠ π/2),(sin^-1(ab) + cos^-1(a + b - 3ab), x = π/2):}`

is continuous at x = ` π/2`, then (a + b) is equal to ______.


Share
Notifications

Englishहिंदीमराठी


      Forgot password?
Use app×