हिंदी

F(x) = sin4x+cos4x in [0,π2] - Mathematics

Advertisements
Advertisements

प्रश्न

f(x) = `sin^4x + cos^4x` in `[0, pi/2]`

योग

उत्तर

We have, f(x) = `sin^4x + cos^4x` in `[0, pi/2]`

We know that sin x and cos x are conditions and differentiable

∴ sin4x and cos4x and hence sin4x + cos4x is continuous and differentiable

Now f(0) = 0 + 1 = 1 and `"f"(pi/2)` = 1 + 0 = 1

⇒ f(0) = `"f"(pi/2)`

So, conditions of Rolle's theorem are satisfied.

Hence, there exists atleast one `"c" ∈ (0, pi/2)`  such that f'(c) = 0

∴ `4sin^3"c" cos "c" - 4cos^3"c" sin"c"` = 0

⇒ `4sin"c" cos"c" (sin^2"c" - cos^2"c")` = 0

⇒ `4sin"c" cos"c"(-cos 2"c")` = 0

⇒ `-2 sin 2"c" * cos 2"c"` = 0

⇒ sin 4c = 0

⇒ 4c = π

⇒ c = `pi/4 ∈ (0, pi/2)`.

Hence, Rolle's theorem has been verified.

shaalaa.com
  क्या इस प्रश्न या उत्तर में कोई त्रुटि है?
अध्याय 5: Continuity And Differentiability - Exercise [पृष्ठ ११२]

APPEARS IN

एनसीईआरटी एक्झांप्लर Mathematics [English] Class 12
अध्याय 5 Continuity And Differentiability
Exercise | Q 66 | पृष्ठ ११२

वीडियो ट्यूटोरियलVIEW ALL [3]

संबंधित प्रश्न

Check whether the conditions of Rolle’s theorem are satisfied by the function
f (x) = (x - 1) (x - 2) (x - 3), x ∈ [1, 3]


Verify Rolle’s theorem for the function f (x) = x2 + 2x – 8, x ∈ [– 4, 2].


Verify Mean Value Theorem, if f (x) = x2 – 4x – 3 in the interval [a, b], where a = 1 and b = 4.


f(x) = (x-1)(x-2)(x-3) , x ε[0,4], find if 'c' LMVT can be applied


Verify the Lagrange’s mean value theorem for the function: 
`f(x)=x + 1/x ` in the interval [1, 3]


Verify Rolle’s Theorem for the function f(x) = ex (sin x – cos x) on `[ (π)/(4), (5π)/(4)]`.


Verify Rolle’s theorem for the function, f(x) = sin 2x in `[0, pi/2]`.


The value of c in Mean value theorem for the function f(x) = x(x – 2), x ∈ [1, 2] is ______.


Find the points on the curve y = (cosx – 1) in [0, 2π], where the tangent is parallel to x-axis


Using Rolle’s theorem, find the point on the curve y = x(x – 4), x ∈ [0, 4], where the tangent is parallel to x-axis


f(x) = `1/(4x - 1)` in [1, 4]


f(x) = x3 – 2x2 – x + 3 in [0, 1]


f(x) = `sqrt(25 - x^2)` in [1, 5]


For the function f(x) = `x + 1/x`, x ∈ [1, 3], the value of c for mean value theorem is ______.


Rolle’s theorem is applicable for the function f(x) = |x – 1| in [0, 2].


If x2 + y2 = 1, then ____________.


The value of c in Rolle’s theorem for the function, f(x) = sin 2x in `[0, pi/2]` is ____________.


A value of c for which the Mean value theorem holds for the function f(x) = logex on the interval [1, 3] is ____________.


The value of c in mean value theorem for the function f(x) = (x - 3)(x - 6)(x - 9) in [3, 5] is ____________.


If A, G, H are arithmetic, geometric and harmonic means between a and b respectively, then A, G, H are


Value of' 'c' of the mean value theorem for the function `f(x) = x(x - 2)`, when a = 0, b = 3/2, is


If `1/(a + ω) + 1/(b + ω) + 1/(c + ω) + 1/(d + ω) = 1/ω`, where a, b, c, d ∈ R and ω is a cube root of unity then `sum 3/(a^2 - a + 1)` is equal to


Rolle's Theorem holds for the function x3 + bx2 + cx, 1 ≤ x ≤ 2 at the point `4/3`, the value of b and c are


Let f(1) = –2 and f'(x) ≥ 4.2 for 1 ≤ x ≤ 6. The possible value of f(6) lies in the interval ______. 


Share
Notifications

Englishहिंदीमराठी


      Forgot password?
Use app×