Advertisements
Advertisements
प्रश्न
f(x) = `sqrt(25 - x^2)` in [1, 5]
उत्तर
We have, f(x) = `sqrt(25 - x^2)` in [1, 5]
Since 25 – x2 and square root function are continuous and differentiable in their domain, given function f(x) is also continuous and differentiable.
So, condition of mean value theorem are satisfied.
Hence, there exists atleast one c ∈ (1, 5) such that,
f'(c) = `("f"(5) - "f"(1))/(5 - 1)`
⇒ `(-"c")/sqrt(25 - "c"^2) = (0 - sqrt(24))/4`
⇒ 16c2 = 24(25 – c2)
⇒ 40c2 = 600
⇒ c2 = 15
⇒ c = `sqrt(15) ∈ (1, 5)`
Hence, mean value theorem has been verified.
APPEARS IN
संबंधित प्रश्न
Verify Rolle's theorem for the function
f(x)=x2-5x+9 on [1,4]
Check whether the conditions of Rolle’s theorem are satisfied by the function
f (x) = (x - 1) (x - 2) (x - 3), x ∈ [1, 3]
Examine if Rolle’s Theorem is applicable to any of the following functions. Can you say some thing about the converse of Rolle’s Theorem from these examples?
f (x) = [x] for x ∈ [5, 9]
Examine if Rolle’s Theorem is applicable to any of the following functions. Can you say some thing about the converse of Rolle’s Theorem from these examples?
f (x) = [x] for x ∈ [– 2, 2]
If f : [– 5, 5] → R is a differentiable function and if f ′(x) does not vanish anywhere, then prove that f (– 5) ≠ f (5).
Verify Mean Value Theorem, if f (x) = x2 – 4x – 3 in the interval [a, b], where a = 1 and b = 4.
Examine the applicability of Mean Value Theorem for all three functions given in the above exercise 2.
Verify Rolle’s theorem for the following function:
f (x) = x2 - 4x + 10 on [0, 4]
Verify Rolle’s theorem for the following function:
`f(x) = e^(-x) sinx " on" [0, pi]`
Verify Lagrange's Mean Value Theorem for the following function:
`f(x ) = 2 sin x + sin 2x " on " [0, pi]`
Verify the Lagrange’s mean value theorem for the function:
`f(x)=x + 1/x ` in the interval [1, 3]
The value of c in Rolle’s Theorem for the function f(x) = e x sinx, x ∈ π [0, π] is ______.
f(x) = x(x – 1)2 in [0, 1]
f(x) = `sin^4x + cos^4x` in `[0, pi/2]`
f(x) = log(x2 + 2) – log3 in [–1, 1]
f(x) = `x(x + 3)e^((–x)/2)` in [–3, 0]
Discuss the applicability of Rolle’s theorem on the function given by f(x) = `{{:(x^2 + 1",", "if" 0 ≤ x ≤ 1),(3 - x",", "if" 1 ≤ x ≤ 2):}`
Find the points on the curve y = (cosx – 1) in [0, 2π], where the tangent is parallel to x-axis
f(x) = `1/(4x - 1)` in [1, 4]
f(x) = sinx – sin2x in [0, π]
Find a point on the curve y = (x – 3)2, where the tangent is parallel to the chord joining the points (3, 0) and (4, 1)
Rolle’s theorem is applicable for the function f(x) = |x – 1| in [0, 2].
The value of c in Rolle’s theorem for the function, f(x) = sin 2x in `[0, pi/2]` is ____________.
If the greatest height attained by a projectile be equal to the horizontal range, then the angle of projection is
Value of' 'c' of the mean value theorem for the function `f(x) = x(x - 2)`, when a = 0, b = 3/2, is