मराठी
महाराष्ट्र राज्य शिक्षण मंडळएचएससी विज्ञान (सामान्य) इयत्ता १२ वी

Verify Rolle's theorem for the function f(x)=x^2-5x+9 on [1,4] - Mathematics and Statistics

Advertisements
Advertisements

प्रश्न

Verify Rolle's theorem for the function  

f(x)=x2-5x+9 on [1,4]

उत्तर

The function f given as f(x)=x2-5x+9 is a polynomial function.
Hence

(i) it is continuous on [1,4]
(ii) differentiable on (1,4).

`Now, f(1)=1^2 - 5(1)+ 9 =1- 5+9 = 5`

`and f (4)= 4^2 - 5(4)+ 9 =16 - 20 + 9 = 5`

f (1)=f(4)
Thus, the function f satisfies all the conditions of the Rolle’s theorem.

therefore there exists c ∈ (1, 4) such that f '(c)= 0

`Now, f(x)=x^2-5x+9`

`therefore f'(x)=d/dx(x^2-5x+9)=2x-5xx1+0`

=2x-5

f'(c)=2c-5

f'(c)=0 gives, 2c-5=0

`c=5/2 in (1,4)`

Hence, the Rolle’s theorem is verified

shaalaa.com
  या प्रश्नात किंवा उत्तरात काही त्रुटी आहे का?
2013-2014 (March)

APPEARS IN

व्हिडिओ ट्यूटोरियलVIEW ALL [2]

संबंधित प्रश्‍न

Verify Lagrange’s mean value theorem for the function f(x)=x+1/x, x ∈ [1, 3]


Verify Rolle’s theorem for the function f (x) = x2 + 2x – 8, x ∈ [– 4, 2].


Verify Mean Value Theorem, if f (x) = x2 – 4x – 3 in the interval [a, b], where a = 1 and b = 4.


Examine the applicability of Mean Value Theorem for all three functions given in the above exercise 2. 


Verify Rolle’s theorem for the following function:

f (x) = x2 - 4x + 10 on [0, 4]


Verify Lagrange's Mean Value Theorem for the following function:

`f(x ) = 2 sin x +  sin 2x " on " [0, pi]`


f(x) = (x-1)(x-2)(x-3) , x ε[0,4], find if 'c' LMVT can be applied


Verify Langrange’s mean value theorem for the function:

f(x) = x (1 – log x) and find the value of  c in the interval [1, 2].


Verify Mean value theorem for the function f(x) = 2sin x + sin 2x on [0, π].


Verify Rolle’s theorem for the function, f(x) = sin 2x in `[0, pi/2]`.


Verify mean value theorem for the function f(x) = (x – 3)(x – 6)(x – 9) in [3, 5].


The value of c in Rolle’s Theorem for the function f(x) = e x sinx, x ∈ π [0, π] is ______.


The value of c in Mean value theorem for the function f(x) = x(x – 2), x ∈ [1, 2] is ______.


f(x) = `sin^4x + cos^4x` in `[0, pi/2]`


f(x) = log(x2 + 2) – log3 in [–1, 1]


f(x) = `x(x + 3)e^((–x)/2)` in [–3, 0]


f(x) = `sqrt(4 - x^2)` in [– 2, 2]


Find the points on the curve y = (cosx – 1) in [0, 2π], where the tangent is parallel to x-axis


Using Rolle’s theorem, find the point on the curve y = x(x – 4), x ∈ [0, 4], where the tangent is parallel to x-axis


The value of c in Rolle’s theorem for the function f(x) = x3 – 3x in the interval `[0, sqrt(3)]` is ______.


For the function f(x) = `x + 1/x`, x ∈ [1, 3], the value of c for mean value theorem is ______.


Rolle’s theorem is applicable for the function f(x) = |x – 1| in [0, 2].


A value of c for which the Mean value theorem holds for the function f(x) = logex on the interval [1, 3] is ____________.


The value of c in mean value theorem for the function f(x) = (x - 3)(x - 6)(x - 9) in [3, 5] is ____________.


Value of' 'c' of the mean value theorem for the function `f(x) = x(x - 2)`, when a = 0, b = 3/2, is


Rolle's Theorem holds for the function x3 + bx2 + cx, 1 ≤ x ≤ 2 at the point `4/3`, the value of b and c are


P(x) be a polynomial satisfying P(x) – 2P'(x) = 3x3 – 27x2 + 38x + 1.

If function

f(x) = `{{:((P^n(x) + 18)/6, x ≠ π/2),(sin^-1(ab) + cos^-1(a + b - 3ab), x = π/2):}`

is continuous at x = ` π/2`, then (a + b) is equal to ______.


`lim_(x→0) sqrt(1 - cosx)/(sqrt(2)x)` is ______.


Let f(1) = –2 and f'(x) ≥ 4.2 for 1 ≤ x ≤ 6. The possible value of f(6) lies in the interval ______. 


Share
Notifications

Englishहिंदीमराठी


      Forgot password?
Use app×