हिंदी

Find Whether the Following Function is Differentiable at X = 1 and X = 2 Or Not : F ( X ) = ⎧ ⎨ ⎩ X , X < 1 2 − X , 1 ≤ X ≤ 2 − 2 + 3 X − X 2 , X > 2 - Mathematics

Advertisements
Advertisements

प्रश्न

Find whether the following function is differentiable at x = 1 and x = 2 or not : \[f\left( x \right) = \begin{cases}x, & & x < 1 \\ 2 - x, & & 1 \leq x \leq 2 \\ - 2 + 3x - x^2 , & & x > 2\end{cases}\] .

उत्तर

We have \[f\left( x \right) = \begin{cases}x, & x < 1 \\ 2 - x, & 1 \leq x \leq 2 \\ - 2 + 3x - x^2 , & x > 2\end{cases}\]

Clearly, f(x), being a polynomial function, is continuous and differentiable for all x < 1, 1 < x < 2 and also for all x > 2.

Thus, the possible points of non-differentiability of f(x) are x = 1 and x = 2.

Now,

f(1) = 2 – 1 = 1

and

f(2) = 2 – 2 = 0

At x = 1,

\[\begin{array}{cl}LHD & = & \lim_{x \to 1^-} \frac{f\left( x \right) - f\left( 1 \right)}{x - 1} \\ = & \lim_{x \to 1} \frac{x - 1}{x - 1} \\ = & 1 \\ RHD & = & \lim_{x \to 1^+} \frac{f\left( x \right) - f\left( 1 \right)}{x - 1} \\ = & \lim_{x \to 1} \frac{\left( 2 - x \right) - 1}{x - 1} \\ = & \lim_{x \to 1} \frac{- \left( x - 1 \right)}{x - 1} \\ = & - 1\end{array}\]

∴ LHD ≠ RHD

So, f(x) is not differentiable at x = 1.

At x = 2,

LHD =`lim_(x →2^-) (f(x) - f (2))/(x-2)`

        = `lim_(x →2) (2- x- 0)/(x-2)`

        = `lim_(x →2) (-(x-2))/(x-2)`

         = -1

RHD = `lim_(x →2^+) (f(x) - f (2))/(x-2)`

         = `lim_(x →2) ((-2+3x -x^2)-0)/(x-2)`

          = `lim_(x →2) (-(x^2- 3x +2))/(x-2)`

          = `lim_(x →2) (-(x-1)(x-2))/(x-2)`

           =` lim_(x →2) -(x-1)`

= -1

LHD = RHD

So, f(x) is differentiable at x = 2.

Thus, the given function is differentiable at x = 2, but not at x = 1.

shaalaa.com
  क्या इस प्रश्न या उत्तर में कोई त्रुटि है?
2014-2015 (March) Foreign Set 2

वीडियो ट्यूटोरियलVIEW ALL [4]

संबंधित प्रश्न

Determine the value of 'k' for which the following function is continuous at x = 3

`f(x) = {(((x + 3)^2 - 36)/(x - 3),  x != 3), (k,  x = 3):}`


If \[f\left( x \right) = \begin{cases}\frac{\sin 3x}{x}, when & x \neq 0 \\ 1 , when & x = 0\end{cases}\]

Find whether f(x) is continuous at x = 0.

 

Show that 

\[f\left( x \right) = \begin{cases}1 + x^2 , if & 0 \leq x \leq 1 \\ 2 - x , if & x > 1\end{cases}\]


Find the value of 'a' for which the function f defined by

\[f\left( x \right) = \begin{cases}a\sin\frac{\pi}{2}(x + 1), & x \leq 0 \\ \frac{\tan x - \sin x}{x^3}, & x > 0\end{cases}\]  is continuous at x = 0.
 

 


For what value of k is the function 

\[f\left( x \right) = \begin{cases}\frac{\sin 5x}{3x}, if & x \neq 0 \\ k , if & x = 0\end{cases}\text{is continuous at x} = 0?\]


If  \[f\left( x \right) = \begin{cases}\frac{1 - \cos kx}{x \sin x}, & x \neq 0 \\ \frac{1}{2} , & x = 0\end{cases}\text{is continuous at x} = 0, \text{ find } k .\]


Discuss the continuity of the f(x) at the indicated points: 

(i) f(x) = | x | + | x − 1 | at x = 0, 1.


Find the points of discontinuity, if any, of the following functions:  \[f\left( x \right) = \begin{cases}\frac{\sin 3x}{x}, & \text{ if }   x \neq 0 \\ 4 , & \text{ if }  x = 0\end{cases}\]

 


Find the points of discontinuity, if any, of the following functions:  \[f\left( x \right) = \begin{cases}\left| x - 3 \right|, & \text{ if }  x \geq 1 \\ \frac{x^2}{4} - \frac{3x}{2} + \frac{13}{4}, & \text{ if }  x < 1\end{cases}\]


Find all point of discontinuity of the function 

\[f\left( t \right) = \frac{1}{t^2 + t - 2}, \text{ where }  t = \frac{1}{x - 1}\]

Define continuity of a function at a point.

 

If the function \[f\left( x \right) = \begin{cases}\left( \cos x \right)^{1/x} , & x \neq 0 \\ k , & x = 0\end{cases}\] is continuous at x = 0, then the value of k is


Let  \[f\left( x \right) = \begin{cases}\frac{x^4 - 5 x^2 + 4}{\left| \left( x - 1 \right) \left( x - 2 \right) \right|}, & x \neq 1, 2 \\ 6 , & x = 1 \\ 12 , & x = 2\end{cases}\]. Then, f (x) is continuous on the set

 


If \[f\left( x \right) = \begin{cases}mx + 1 , & x \leq \frac{\pi}{2} \\ \sin x + n, & x > \frac{\pi}{2}\end{cases}\] is continuous at \[x = \frac{\pi}{2}\]  , then

 


The points of discontinuity of the function 

\[f\left( x \right) = \begin{cases}2\sqrt{x} , & 0 \leq x \leq 1 \\ 4 - 2x , & 1 < x < \frac{5}{2} \\ 2x - 7 , & \frac{5}{2} \leq x \leq 4\end{cases}\text{ is } \left( \text{ are }\right)\] 


If  \[f\left( x \right) = \begin{cases}\frac{1 - \sin^2 x}{3 \cos^2 x} , & x < \frac{\pi}{2} \\ a , & x = \frac{\pi}{2} \\ \frac{b\left( 1 - \sin x \right)}{\left( \pi - 2x \right)^2}, & x > \frac{\pi}{2}\end{cases}\]. Then, f (x) is continuous at  \[x = \frac{\pi}{2}\], if

 


Show that \[f\left( x \right) =\]`{(12x, -,13, if , x≤3),(2x^2, +,5, if x,>3):}` is differentiable at x = 3. Also, find f'(3).


If f is defined by f (x) = x2, find f'(2).


Write the points where f (x) = |loge x| is not differentiable.


If \[f\left( x \right) = x^2 + \frac{x^2}{1 + x^2} + \frac{x^2}{\left( 1 + x^2 \right)} + . . . + \frac{x^2}{\left( 1 + x^2 \right)} + . . . . ,\] 

then at x = 0, f (x)


If \[f\left( x \right) = \left| \log_e |x| \right|\] 


Find k, if f(x) =`log (1+3x)/(5x)` for x ≠ 0

                     = k                    for x = 0

is continuous at x = 0. 


Evaluate :`int Sinx/(sqrt(cos^2 x-2 cos x-3)) dx`


Discuss the continuity of f at x = 1
Where f(X) = `[ 3 - sqrt ( 2x + 7 ) / ( x - 1 )]`           For x ≠ 1
                    = `-1/3`                                                 For x = 1


If y = ( sin x )x , Find `dy/dx`


Show that the function f defined by f(x) = `{{:(x sin  1/x",", x ≠ 0),(0",", x = 0):}` is continuous at x = 0.


The number of points at which the function f(x) = `1/(x - [x])` is not continuous is ______.


y = |x – 1| is a continuous function.


The composition of two continuous function is a continuous function.


If the following function is continuous at x = 2 then the value of k will be ______.

f(x) = `{{:(2x + 1",", if x < 2),(                 k",", if x = 2),(3x - 1",", if x > 2):}`


Share
Notifications

Englishहिंदीमराठी


      Forgot password?
Use app×