Advertisements
Advertisements
Question
Examine the continuity off at x = 1, if
f (x) = 5x - 3 , for 0 ≤ x ≤ 1
= x2 + 1 , for 1 ≤ x ≤ 2
Solution
`lim_(x -> 1)` f (x) = `lim_(x -> 1)` (5x - 3)
= 2
`lim_(x -> 1) = "f"("x") = lim_(x -> 1) ("x"^2 + 1)`
= 2
f(1) = 12 + 1 = 2
As `lim_(x -> 1^-)` f(x) = `lim_(x -> 1)` f(x) = f(1)
∴ f(x) is continuous at x = 1.
APPEARS IN
RELATED QUESTIONS
Examine the following function for continuity:
`f (x)1/(x - 5), x != 5`
A function f(x) is defined as
Show that f(x) is continuous at x = 3
Discuss the continuity of the following functions at the indicated point(s):
Discuss the continuity of the following functions at the indicated point(s):
Show that
\[f\left( x \right) = \begin{cases}\frac{\sin 3x}{\tan 2x} , if x < 0 \\ \frac{3}{2} , if x = 0 \\ \frac{\log(1 + 3x)}{e^{2x} - 1} , if x > 0\end{cases}\text{is continuous at} x = 0\]
Determine the value of the constant k so that the function
\[f\left( x \right) = \begin{cases}k x^2 , if & x \leq 2 \\ 3 , if & x > 2\end{cases}\text{is continuous at x} = 2 .\]
For what value of k is the following function continuous at x = 2?
The function \[f\left( x \right) = \begin{cases}\frac{e^{1/x} - 1}{e^{1/x} + 1}, & x \neq 0 \\ 0 , & x = 0\end{cases}\]
Write the number of points where f (x) = |x| + |x − 1| is continuous but not differentiable.
The total cost C for producing x units is Rs (x2 + 60x + 50) and the price is Rs (180 - x) per unit. For how many units the profit is maximum.
Examine the continuity of the followin function :
`{:(,f(x),=x^2cos(1/x),",","for "x!=0),(,,=0,",","for "x=0):}}" at "x=0`
The function f(x) = [x], where [x] denotes the greatest integer function, is continuous at ______.
The value of k which makes the function defined by f(x) = `{{:(sin 1/x",", "if" x ≠ 0),("k"",", "if" x = 0):}`, continuous at x = 0 is ______.
The set of points where the functions f given by f(x) = |x – 3| cosx is differentiable is ______.
The number of points at which the function f(x) = `1/(log|x|)` is discontinuous is ______.
For continuity, at x = a, each of `lim_(x -> "a"^+) "f"(x)` and `lim_(x -> "a"^-) "f"(x)` is equal to f(a).
f(x) = `{{:(("e"^(1/x))/(1 + "e"^(1/x))",", "if" x ≠ 0),(0",", "if" x = 0):}` at x = 0
Given the function f(x) = `1/(x + 2)`. Find the points of discontinuity of the composite function y = f(f(x))
`lim_("x" -> "x" //4) ("cos x - sin x")/("x"- "x" /4)` is equal to ____________.
If the following function is continuous at x = 2 then the value of k will be ______.
f(x) = `{{:(2x + 1",", if x < 2),( k",", if x = 2),(3x - 1",", if x > 2):}`