English

If F ( X ) = ⎧ ⎪ ⎪ ⎪ ⎨ ⎪ ⎪ ⎪ ⎩ Sin ( a + 1 ) X + Sin X X , X < 0 C , X = 0 √ X + B X 2 − √ X B X √ X , X > 0 is Continuous at X = 0, Then - Mathematics

Advertisements
Advertisements

Question

If  \[f\left( x \right) = \begin{cases}\frac{\sin (a + 1) x + \sin x}{x} , & x < 0 \\ c , & x = 0 \\ \frac{\sqrt{x + b x^2} - \sqrt{x}}{bx\sqrt{x}} , & x > 0\end{cases}\]is continuous at x = 0, then 

Options

  • a =  \[- \frac{3}{2}\] , b = 0, c = \[\frac{1}{2}\]

  •  a = \[- \frac{3}{2}\] , b = 1, c = \[- \frac{1}{2}\] 

  • a =\[- \frac{3}{2}\], b ∈ R − {0}, c = \[\frac{1}{2}\] 

  • none of these

MCQ

Solution

a =\[- \frac{3}{2}\], b ∈ R − {0}, c = \[\frac{1}{2}\] 

The given function can be rewritten as
\[f\left( x \right) = \begin{cases}\frac{\sin \left( a + 1 \right) x + x \sin x}{x}, \text{ for}  x < 0 \\ c ,\text{  for }  x = 0 \\ \frac{\sqrt{x + b x^2} - \sqrt{x}}{b x^\frac{3}{2}} , \text{ for } x > 0\end{cases}\]
\[\Rightarrow f\left( x \right) = \begin{cases}\frac{\sin \left( a + 1 \right)x + \sin x}{x}, \text{ for }  x < 0 \\ c , \text{ for } x = 0 \\ \frac{\sqrt{1 + bx} - 1}{bx} , \text{ for }  x > 0\end{cases}\]

We have
(LHL at x = 0) =  \[\lim_{x \to 0^-} f\left( x \right) = \lim_{h \to 0} f\left( 0 - h \right) = \lim_{h \to 0} f\left( - h \right)\]

\[= \lim_{h \to 0} \left[ \frac{- \sin \left( a + 1 \right)h - \sin \left( - h \right)}{h} \right] = \lim_{h \to 0} \left[ \frac{- \sin \left( a + 1 \right)h}{h} - \frac{\sin h}{h} \right]\]
\[= - \left( a + 1 \right) \lim_{h \to 0} \left[ \frac{\sin \left( a + 1 \right)h}{\left( a + 1 \right)h} \right] - \lim_{h \to 0} \frac{\sin h}{h} = - a - 1\]

(RHL at x = 0) =  \[\lim_{x \to 0^+} f\left( x \right) = \lim_{h \to 0} f\left( 0 + h \right) = \lim_{h \to 0} f\left( h \right)\]

\[\lim_{h \to 0} \left( \frac{\sqrt{1 + bh} - 1}{bh} \right) = \lim_{h \to 0} \left( \frac{bh}{bh\left( \sqrt{1 + bh} + 1 \right)} \right) = \lim_{h \to 0} \left( \frac{1}{\left( \sqrt{1 + bh} + 1 \right)} \right) = \frac{1}{2}\]

Also,  \[f\left( 0 \right) = c\] 

If  \[f\left( x \right)\]  is continuous at x = 0, then

\[\lim_{x \to 0^-} f\left( x \right) = \lim_{x \to 0^+} f\left( x \right) = f\left( 0 \right)\] 
\[\Rightarrow - a - 1 = \frac{1}{2} = c\]
\[\Rightarrow - a - 1 = \frac{1}{2} \text{ and } c = \frac{1}{2}\]
\[\Rightarrow a = \frac{- 3}{2}\] \[, c = \frac{1}{2}\]

Now,

\[\frac{\sqrt{1 + bx} - 1}{bx}\]  exists only if  \[bx \neq 0 \Rightarrow b \neq 0\]
Thus,  \[b \in R - \left\{ 0 \right\}\]. 
shaalaa.com
  Is there an error in this question or solution?
Chapter 9: Continuity - Exercise 9.4 [Page 44]

APPEARS IN

RD Sharma Mathematics [English] Class 12
Chapter 9 Continuity
Exercise 9.4 | Q 14 | Page 44

RELATED QUESTIONS

Examine the following function for continuity:

`f (x)1/(x - 5), x != 5`


If \[f\left( x \right) = \begin{cases}e^{1/x} , if & x \neq 0 \\ 1 , if & x = 0\end{cases}\] find whether f is continuous at x = 0.


Discuss the continuity of the following functions at the indicated point(s): 

(i) \[f\left( x \right) = \begin{cases}\left| x \right| \cos\left( \frac{1}{x} \right), & x \neq 0 \\ 0 , & x = 0\end{cases}at x = 0\]

 


Discuss the continuity of the following functions at the indicated point(s): 

\[f\left( x \right) = \begin{cases}\frac{\left| x^2 - 1 \right|}{x - 1}, for & x \neq 1 \\ 2 , for & x = 1\end{cases}at x = 1\]

Determine the value of the constant k so that the function

\[f\left( x \right) = \begin{cases}k x^2 , if & x \leq 2 \\ 3 , if & x > 2\end{cases}\text{is continuous at x} = 2 .\]


In each of the following, find the value of the constant k so that the given function is continuous at the indicated point;  \[f\left( x \right) = \begin{cases}\frac{x^2 - 25}{x - 5}, & x \neq 5 \\ k , & x = 5\end{cases}\]at x = 5


Let\[f\left( x \right) = \left\{ \begin{array}\frac{1 - \sin^3 x}{3 \cos^2 x} , & \text{ if }  x < \frac{\pi}{2} \\ a , & \text{ if }  x = \frac{\pi}{2} \\ \frac{b(1 - \sin x)}{(\pi - 2x )^2}, & \text{ if }  x > \frac{\pi}{2}\end{array} . \right.\] ]If f(x) is continuous at x = \[\frac{\pi}{2}\] , find a and b.

 

Find the values of a and b so that the function f(x) defined by \[f\left( x \right) = \begin{cases}x + a\sqrt{2}\sin x , & \text{ if }0 \leq x < \pi/4 \\ 2x \cot x + b , & \text{ if } \pi/4 \leq x < \pi/2 \\ a \cos 2x - b \sin x, & \text{ if }  \pi/2 \leq x \leq \pi\end{cases}\]becomes continuous on [0, π].


Find all the points of discontinuity of f defined by f (x) = | x |− | x + 1 |.


Let  \[f\left( x \right) = \begin{cases}\frac{x^4 - 5 x^2 + 4}{\left| \left( x - 1 \right) \left( x - 2 \right) \right|}, & x \neq 1, 2 \\ 6 , & x = 1 \\ 12 , & x = 2\end{cases}\]. Then, f (x) is continuous on the set

 


\[f\left( x \right) = \begin{cases}\frac{\sqrt{1 + px} - \sqrt{1 - px}}{x}, & - 1 \leq x < 0 \\ \frac{2x + 1}{x - 2} , & 0 \leq x \leq 1\end{cases}\]is continuous in the interval [−1, 1], then p is equal to

 


If  \[f\left( x \right) = \begin{cases}a \sin\frac{\pi}{2}\left( x + 1 \right), & x \leq 0 \\ \frac{\tan x - \sin x}{x^3}, & x > 0\end{cases}\] is continuous at x = 0, then a equals


The value of k which makes \[f\left( x \right) = \begin{cases}\sin\frac{1}{x}, & x \neq 0 \\ k , & x = 0\end{cases}\]    continuous at x = 0, is

 


The points of discontinuity of the function 

\[f\left( x \right) = \begin{cases}2\sqrt{x} , & 0 \leq x \leq 1 \\ 4 - 2x , & 1 < x < \frac{5}{2} \\ 2x - 7 , & \frac{5}{2} \leq x \leq 4\end{cases}\text{ is } \left( \text{ are }\right)\] 


Show that the function f defined as follows, is continuous at x = 2, but not differentiable thereat: 

\[f\left( x \right) = \begin{cases}3x - 2, & 0 < x \leq 1 \\ 2 x^2 - x, & 1 < x \leq 2 \\ 5x - 4, & x > 2\end{cases}\]

If \[f\left( x \right) = \begin{cases}a x^2 - b, & \text { if }\left| x \right| < 1 \\ \frac{1}{\left| x \right|} , & \text { if }\left| x \right| \geq 1\end{cases}\]  is differentiable at x = 1, find a, b.


If f is defined by f (x) = x2, find f'(2).


Discuss the continuity and differentiability of f (x) = e|x| .


Let \[f\left( x \right) = \left( x + \left| x \right| \right) \left| x \right|\]


If \[f\left( x \right) = \sqrt{1 - \sqrt{1 - x^2}},\text{ then } f \left( x \right)\text {  is }\] 


If \[f\left( x \right) = x^2 + \frac{x^2}{1 + x^2} + \frac{x^2}{\left( 1 + x^2 \right)} + . . . + \frac{x^2}{\left( 1 + x^2 \right)} + . . . . ,\] 

then at x = 0, f (x)


If \[f\left( x \right) = \begin{cases}\frac{1}{1 + e^{1/x}} & , x \neq 0 \\ 0 & , x = 0\end{cases}\]  then f (x) is 


If the function f is continuous at = 2, then find f(2) where f(x) = `(x^5 - 32)/(x - 2)`, for ≠ 2.


If f(x) = `(e^(2x) - 1)/(ax)` .                for x < 0 , a ≠ 0
         = 1.                             for x = 0
         = `(log(1 + 7x))/(bx)`.        for x > 0 , b ≠ 0
is continuous at x = 0 . then find a and b


Examine the continuity of the following function :
f(x) = x2 - x + 9,          for x ≤ 3
      = 4x + 3,               for x > 3 
at x = 3.


If y = ( sin x )x , Find `dy/dx`


Discuss the continuity of function f at x = 0.
Where f(X) = `[ [sqrt ( 4 + x ) - 2 ]/ ( 3x )]`, For x ≠ 0
                  = `1/12`,                      For x = 0


Examine the continuity of the followin function : 

  `{:(,f(x),=x^2cos(1/x),",","for "x!=0),(,,=0,",","for "x=0):}}" at "x=0`   


If f (x) = `(1 - "sin x")/(pi - "2x")^2` , for x ≠ `pi/2` is continuous at x = `pi/4` , then find `"f"(pi/2) .`


The probability distribution function of continuous random variable X is given by
f( x ) = `x/4`,  0 < x < 2
        = 0,       Otherwise
Find P( x ≤ 1)


Discuss the continuity of the function at the point given. If the function is discontinuous, then remove the discontinuity.

f (x) = `(sin^2 5x)/x^2` for x ≠ 0 
= 5   for x = 0, at x = 0


If the function
f(x) = x2 + ax + b,         x < 2

      = 3x + 2,                 2≤ x ≤ 4

      = 2ax + 5b,             4 < x

is continuous at x = 2 and x = 4, then find the values of a and b


The function given by f (x) = tanx is discontinuous on the set ______.


The value of k which makes the function defined by f(x) = `{{:(sin  1/x",",  "if"  x ≠ 0),("k"",",  "if"  x = 0):}`, continuous at x = 0 is ______.


Show that f(x) = |x – 5| is continuous but not differentiable at x = 5.


The set of points where the function f given by f(x) = |2x − 1| sinx is differentiable is ______.


An example of a function which is continuous everywhere but fails to be differentiable exactly at two points is ______.


If f is continuous on its domain D, then |f| is also continuous on D.


Share
Notifications

Englishहिंदीमराठी


      Forgot password?
Use app×