English

Find the Values Of A And B So that the Function F(X) Defined by \[F\Left( X \Right) = \Begin{Cases}X + A\Sqrt{2}\Sin X , and \Text{ If }0 \Leq X < \Pi/4 \\ 2x \Cot X + B , - Mathematics

Advertisements
Advertisements

Question

Find the values of a and b so that the function f(x) defined by \[f\left( x \right) = \begin{cases}x + a\sqrt{2}\sin x , & \text{ if }0 \leq x < \pi/4 \\ 2x \cot x + b , & \text{ if } \pi/4 \leq x < \pi/2 \\ a \cos 2x - b \sin x, & \text{ if }  \pi/2 \leq x \leq \pi\end{cases}\]becomes continuous on [0, π].

Sum

Solution

Given: is continuous on  \[\left[ 0, \pi \right]\] .

∴ is continuous at x =   \[\frac{\pi}{4}\] and  \[\frac{\pi}{2}\]

At x =  \[\frac{\pi}{4}\], we have

\[\lim_{x \to \frac{\pi}{4}^-} f\left( x \right) = \lim_{h \to 0} f\left( \frac{\pi}{4} - h \right) = \lim_{h \to 0} \left[ \left( \frac{\pi}{4} - h \right) + a\sqrt{2}\sin \left( \frac{\pi}{4} - h \right) \right] = \left[ \frac{\pi}{4} + a\sqrt{2} \sin \left( \frac{\pi}{4} \right) \right] = \left[ \frac{\pi}{4} + a \right]\]

\[\lim_{x \to \frac{\pi}{4}^+} f\left( x \right) = \lim_{h \to 0} f\left( \frac{\pi}{4} + h \right) = \lim_{h \to 0} \left[ 2\left( \frac{\pi}{4} + h \right) \cot \left( \frac{\pi}{4} + h \right) + b \right] = \left[ \frac{\pi}{2} \cot \left( \frac{\pi}{4} \right) + b \right] = \left[ \frac{\pi}{2} + b \right]\]

At x =  \[\frac{\pi}{2}\] , we have

\[\lim_{x \to \frac{\pi}{2}^-} f\left( x \right) = \lim_{h \to 0} f\left( \frac{\pi}{2} - h \right) = \lim_{h \to 0} \left[ 2\left( \frac{\pi}{2} - h \right) \cot \left( \frac{\pi}{2} - h \right) + b \right] = b\]
\[\lim_{x \to \frac{\pi}{2}^+} f\left( x \right) = \lim_{h \to 0} f\left( \frac{\pi}{2} + h \right) = \lim_{h \to 0} \left[ a \cos 2\left( \frac{\pi}{2} + h \right) - b \sin \left( \frac{\pi}{2} + h \right) \right] = - a - b\]
Since is continuous at x = \[\frac{\pi}{4}\]and x = \[\frac{\pi}{2}\]  we get 
\[\lim_{x \to \frac{\pi}{2}^-} f\left( x \right) = \lim_{x \to \frac{\pi}{2}^+} f\left( x \right) \text{ and } \lim_{x \to \frac{\pi}{4}^-} f\left( x \right) = \lim_{x \to \frac{\pi}{4}^+} f\left( x \right)\]
\[\Rightarrow - b - a = b \text{ and } \frac{\pi}{4} + a = \frac{\pi}{2} + b\]
\[ \Rightarrow b = \frac{- a}{2} . . . \left( 1 \right) \text{ and }  \frac{- \pi}{4} = b - a . . . \left( 2 \right)\]
\[ \Rightarrow \frac{- \pi}{4} = \frac{- 3a}{2} \left[ \text{ Substituting the value of b in eq .}  \left( 2 \right) \right]\]
\[ \Rightarrow a = \frac{\pi}{6}\]
\[ \Rightarrow b = \frac{- \pi}{12} \left[ \text{ From eq } . \left( 1 \right) \right]\]


shaalaa.com
  Is there an error in this question or solution?
Chapter 9: Continuity - Exercise 9.2 [Page 36]

APPEARS IN

RD Sharma Mathematics [English] Class 12
Chapter 9 Continuity
Exercise 9.2 | Q 6 | Page 36

RELATED QUESTIONS

Examine the following function for continuity:

f(x) = | x – 5|


For what value of k is the following function continuous at x = 1? \[f\left( x \right) = \begin{cases}\frac{x^2 - 1}{x - 1}, & x \neq 1 \\ k , & x = 1\end{cases}\]


If   \[f\left( x \right) = \begin{cases}\frac{2^{x + 2} - 16}{4^x - 16}, \text{ if } & x \neq 2 \\ k , \text{ if }  & x = 2\end{cases}\]  is continuous at x = 2, find k.


Find the points of discontinuity, if any, of the following functions:  \[f\left( x \right) = \begin{cases}\frac{\sin 3x}{x}, & \text{ if }   x \neq 0 \\ 4 , & \text{ if }  x = 0\end{cases}\]

 


Discuss the continuity of the function  \[f\left( x \right) = \begin{cases}2x - 1 , & \text { if }  x < 2 \\ \frac{3x}{2} , & \text{ if  } x \geq 2\end{cases}\]


Find all point of discontinuity of the function 

\[f\left( t \right) = \frac{1}{t^2 + t - 2}, \text{ where }  t = \frac{1}{x - 1}\]

Write the value of b for which \[f\left( x \right) = \begin{cases}5x - 4 & 0 < x \leq 1 \\ 4 x^2 + 3bx & 1 < x < 2\end{cases}\]  is continuous at x = 1.

 


If \[f\left( x \right) = \left| \log_{10} x \right|\] then at x = 1


If  \[f\left( x \right) = \begin{cases}\frac{\sin (a + 1) x + \sin x}{x} , & x < 0 \\ c , & x = 0 \\ \frac{\sqrt{x + b x^2} - \sqrt{x}}{bx\sqrt{x}} , & x > 0\end{cases}\]is continuous at x = 0, then 


If \[f\left( x \right) = \begin{cases}mx + 1 , & x \leq \frac{\pi}{2} \\ \sin x + n, & x > \frac{\pi}{2}\end{cases}\] is continuous at \[x = \frac{\pi}{2}\]  , then

 


The value of f (0) so that the function 

\[f\left( x \right) = \frac{2 - \left( 256 - 7x \right)^{1/8}}{\left( 5x + 32 \right)^{1/5} - 2},\]  0 is continuous everywhere, is given by


If  \[f\left( x \right) = \begin{cases}a \sin\frac{\pi}{2}\left( x + 1 \right), & x \leq 0 \\ \frac{\tan x - \sin x}{x^3}, & x > 0\end{cases}\] is continuous at x = 0, then a equals


Discuss the continuity and differentiability of f (x) = |log |x||.


If f (x) is differentiable at x = c, then write the value of 

\[\lim_{x \to c} f \left( x \right)\]

Write the number of points where f (x) = |x| + |x − 1| is continuous but not differentiable.


If \[f\left( x \right) = \sqrt{1 - \sqrt{1 - x^2}},\text{ then } f \left( x \right)\text {  is }\] 


If f (x) = |3 − x| + (3 + x), where (x) denotes the least integer greater than or equal to x, then f (x) is


Find the value of k for which the function f (x ) =  \[\binom{\frac{x^2 + 3x - 10}{x - 2}, x \neq 2}{ k , x^2 }\] is continuous at x = 2 .

 
 

Find k, if the function f is continuous at x = 0, where

`f(x)=[(e^x - 1)(sinx)]/x^2`,      for x ≠ 0

     = k                             ,        for x = 0


If the function f is continuous at = 2, then find f(2) where f(x) = `(x^5 - 32)/(x - 2)`, for ≠ 2.


 If the function f (x) = `(15^x - 3^x - 5^x + 1)/(x tanx)`,  x ≠ 0 is continuous at x = 0 , then find f(0).


Examine the continuity of the followin function : 

  `{:(,f(x),=x^2cos(1/x),",","for "x!=0),(,,=0,",","for "x=0):}}" at "x=0`   


Discuss the continuity of the function at the point given. If the function is discontinuous, then remove the discontinuity.

f (x) = `(sin^2 5x)/x^2` for x ≠ 0 
= 5   for x = 0, at x = 0


Discuss the continuity of the function `f(x) = (3 - sqrt(2x + 7))/(x - 1)` for x ≠ 1

= `-1/3`   for x = 1, at x = 1


If the function f is continuous at x = 2, then find 'k' where

f(x) = `(x^2 + 5)/(x - 1),` for  1< x ≤ 2 
      = kx + 1 , for x > 2


Let f(x) = `{{:((1 - cos 4x)/x^2",",  "if"  x < 0),("a"",",  "if"  x = 0),(sqrt(x)/(sqrt(16) + sqrt(x) - 4)",", "if"  x > 0):}`. For what value of a, f is continuous at x = 0?


Examine the differentiability of the function f defined by
f(x) = `{{:(2x + 3",",  "if"  -3 ≤ x < - 2),(x + 1",",  "if"  -2 ≤ x < 0),(x + 2",",  "if"  0 ≤ x ≤ 1):}`


The number of points at which the function f(x) = `1/(x - [x])` is not continuous is ______.


The function given by f (x) = tanx is discontinuous on the set ______.


f(x) = `{{:((1 - cos 2x)/x^2",", "if"  x ≠ 0),(5",", "if"  x = 0):}` at x = 0


f(x) = `{{:((2x^2 - 3x - 2)/(x - 2)",", "if"  x ≠ 2),(5",", "if"  x = 2):}` at x = 2


Given the function f(x) = `1/(x + 2)`. Find the points of discontinuity of the composite function y = f(f(x))


Examine the differentiability of f, where f is defined by
f(x) = `{{:(1 + x",",  "if"  x ≤ 2),(5 - x",",  "if"  x > 2):}` at x = 2


Show that f(x) = |x – 5| is continuous but not differentiable at x = 5.


The set of points where the function f given by f(x) = |2x − 1| sinx is differentiable is ______.


An example of a function which is continuous everywhere but fails to be differentiable exactly at two points is ______.


Write the number of points where f(x) = |x + 2| + |x - 3| is not differentiable.


Share
Notifications

Englishहिंदीमराठी


      Forgot password?
Use app×