Advertisements
Advertisements
Question
Find the values of a and b so that the function f(x) defined by \[f\left( x \right) = \begin{cases}x + a\sqrt{2}\sin x , & \text{ if }0 \leq x < \pi/4 \\ 2x \cot x + b , & \text{ if } \pi/4 \leq x < \pi/2 \\ a \cos 2x - b \sin x, & \text{ if } \pi/2 \leq x \leq \pi\end{cases}\]becomes continuous on [0, π].
Solution
Given: f is continuous on \[\left[ 0, \pi \right]\] .
∴ f is continuous at x = \[\frac{\pi}{4}\] and \[\frac{\pi}{2}\]
At x = \[\frac{\pi}{4}\], we have
\[\lim_{x \to \frac{\pi}{4}^-} f\left( x \right) = \lim_{h \to 0} f\left( \frac{\pi}{4} - h \right) = \lim_{h \to 0} \left[ \left( \frac{\pi}{4} - h \right) + a\sqrt{2}\sin \left( \frac{\pi}{4} - h \right) \right] = \left[ \frac{\pi}{4} + a\sqrt{2} \sin \left( \frac{\pi}{4} \right) \right] = \left[ \frac{\pi}{4} + a \right]\]
\[\lim_{x \to \frac{\pi}{4}^+} f\left( x \right) = \lim_{h \to 0} f\left( \frac{\pi}{4} + h \right) = \lim_{h \to 0} \left[ 2\left( \frac{\pi}{4} + h \right) \cot \left( \frac{\pi}{4} + h \right) + b \right] = \left[ \frac{\pi}{2} \cot \left( \frac{\pi}{4} \right) + b \right] = \left[ \frac{\pi}{2} + b \right]\]
At x = \[\frac{\pi}{2}\] , we have
\[ \Rightarrow b = \frac{- a}{2} . . . \left( 1 \right) \text{ and } \frac{- \pi}{4} = b - a . . . \left( 2 \right)\]
\[ \Rightarrow \frac{- \pi}{4} = \frac{- 3a}{2} \left[ \text{ Substituting the value of b in eq .} \left( 2 \right) \right]\]
\[ \Rightarrow a = \frac{\pi}{6}\]
\[ \Rightarrow b = \frac{- \pi}{12} \left[ \text{ From eq } . \left( 1 \right) \right]\]
APPEARS IN
RELATED QUESTIONS
Examine the following function for continuity:
f(x) = | x – 5|
For what value of k is the following function continuous at x = 1? \[f\left( x \right) = \begin{cases}\frac{x^2 - 1}{x - 1}, & x \neq 1 \\ k , & x = 1\end{cases}\]
If \[f\left( x \right) = \begin{cases}\frac{2^{x + 2} - 16}{4^x - 16}, \text{ if } & x \neq 2 \\ k , \text{ if } & x = 2\end{cases}\] is continuous at x = 2, find k.
Find the points of discontinuity, if any, of the following functions: \[f\left( x \right) = \begin{cases}\frac{\sin 3x}{x}, & \text{ if } x \neq 0 \\ 4 , & \text{ if } x = 0\end{cases}\]
Discuss the continuity of the function \[f\left( x \right) = \begin{cases}2x - 1 , & \text { if } x < 2 \\ \frac{3x}{2} , & \text{ if } x \geq 2\end{cases}\]
Find all point of discontinuity of the function
Write the value of b for which \[f\left( x \right) = \begin{cases}5x - 4 & 0 < x \leq 1 \\ 4 x^2 + 3bx & 1 < x < 2\end{cases}\] is continuous at x = 1.
If \[f\left( x \right) = \left| \log_{10} x \right|\] then at x = 1
If \[f\left( x \right) = \begin{cases}\frac{\sin (a + 1) x + \sin x}{x} , & x < 0 \\ c , & x = 0 \\ \frac{\sqrt{x + b x^2} - \sqrt{x}}{bx\sqrt{x}} , & x > 0\end{cases}\]is continuous at x = 0, then
If \[f\left( x \right) = \begin{cases}mx + 1 , & x \leq \frac{\pi}{2} \\ \sin x + n, & x > \frac{\pi}{2}\end{cases}\] is continuous at \[x = \frac{\pi}{2}\] , then
The value of f (0) so that the function
If \[f\left( x \right) = \begin{cases}a \sin\frac{\pi}{2}\left( x + 1 \right), & x \leq 0 \\ \frac{\tan x - \sin x}{x^3}, & x > 0\end{cases}\] is continuous at x = 0, then a equals
Discuss the continuity and differentiability of f (x) = |log |x||.
If f (x) is differentiable at x = c, then write the value of
Write the number of points where f (x) = |x| + |x − 1| is continuous but not differentiable.
If \[f\left( x \right) = \sqrt{1 - \sqrt{1 - x^2}},\text{ then } f \left( x \right)\text { is }\]
If f (x) = |3 − x| + (3 + x), where (x) denotes the least integer greater than or equal to x, then f (x) is
Find the value of k for which the function f (x ) = \[\binom{\frac{x^2 + 3x - 10}{x - 2}, x \neq 2}{ k , x^2 }\] is continuous at x = 2 .
Find k, if the function f is continuous at x = 0, where
`f(x)=[(e^x - 1)(sinx)]/x^2`, for x ≠ 0
= k , for x = 0
If the function f is continuous at = 2, then find f(2) where f(x) = `(x^5 - 32)/(x - 2)`, for ≠ 2.
If the function f (x) = `(15^x - 3^x - 5^x + 1)/(x tanx)`, x ≠ 0 is continuous at x = 0 , then find f(0).
Examine the continuity of the followin function :
`{:(,f(x),=x^2cos(1/x),",","for "x!=0),(,,=0,",","for "x=0):}}" at "x=0`
Discuss the continuity of the function at the point given. If the function is discontinuous, then remove the discontinuity.
f (x) = `(sin^2 5x)/x^2` for x ≠ 0
= 5 for x = 0, at x = 0
Discuss the continuity of the function `f(x) = (3 - sqrt(2x + 7))/(x - 1)` for x ≠ 1
= `-1/3` for x = 1, at x = 1
If the function f is continuous at x = 2, then find 'k' where
f(x) = `(x^2 + 5)/(x - 1),` for 1< x ≤ 2
= kx + 1 , for x > 2
Let f(x) = `{{:((1 - cos 4x)/x^2",", "if" x < 0),("a"",", "if" x = 0),(sqrt(x)/(sqrt(16) + sqrt(x) - 4)",", "if" x > 0):}`. For what value of a, f is continuous at x = 0?
Examine the differentiability of the function f defined by
f(x) = `{{:(2x + 3",", "if" -3 ≤ x < - 2),(x + 1",", "if" -2 ≤ x < 0),(x + 2",", "if" 0 ≤ x ≤ 1):}`
The number of points at which the function f(x) = `1/(x - [x])` is not continuous is ______.
The function given by f (x) = tanx is discontinuous on the set ______.
f(x) = `{{:((1 - cos 2x)/x^2",", "if" x ≠ 0),(5",", "if" x = 0):}` at x = 0
f(x) = `{{:((2x^2 - 3x - 2)/(x - 2)",", "if" x ≠ 2),(5",", "if" x = 2):}` at x = 2
Given the function f(x) = `1/(x + 2)`. Find the points of discontinuity of the composite function y = f(f(x))
Examine the differentiability of f, where f is defined by
f(x) = `{{:(1 + x",", "if" x ≤ 2),(5 - x",", "if" x > 2):}` at x = 2
Show that f(x) = |x – 5| is continuous but not differentiable at x = 5.
The set of points where the function f given by f(x) = |2x − 1| sinx is differentiable is ______.
An example of a function which is continuous everywhere but fails to be differentiable exactly at two points is ______.
Write the number of points where f(x) = |x + 2| + |x - 3| is not differentiable.