English

If the Function F (X) = 15 X − 3 X − 5 X + 1 X Tan X , X ≠ 0 is Continuous at X = 0 , Then Find F(0). - Mathematics and Statistics

Advertisements
Advertisements

Question

 If the function f (x) = `(15^x - 3^x - 5^x + 1)/(x tanx)`,  x ≠ 0 is continuous at x = 0 , then find f(0).

Sum

Solution

Function f is continuous at x = 0 

∴ `f(0) = lim_(x → 0) f(x)`

= `lim_(x → 0) (15^x - 3^x - 5^x + 1)/(x tanx)`

= `lim_(x → 0) (3^x.5^x - 3^x - 5^x + 1)/(x tanx)`

= `lim_(x → 0) (3^x(5^x - 1) - 1(5^x - 1))/(x tanx)`

= `lim_(x → 0) ((5^x - 1)(3^x - 1))/(x tanx)`

= `(lim_(x → 0) ((5^x - 1)(3^x - 1))/x^2)/(lim_(x → 0) (xtanx)/x^2`

= `((lim_(x → 0) (5^x - 1)/x) (lim_(x → 0) (3^x - 1)/x))/((lim_(x → 0) tanx/x))`

= `((log 5)(log 3))/1`

f(0) = (log5)(log3)

shaalaa.com
  Is there an error in this question or solution?
2016-2017 (March)

APPEARS IN

RELATED QUESTIONS

Discuss the continuity of the following functions at the indicated point(s): 

(i) \[f\left( x \right) = \begin{cases}\left| x \right| \cos\left( \frac{1}{x} \right), & x \neq 0 \\ 0 , & x = 0\end{cases}at x = 0\]

 


Discuss the continuity of the following functions at the indicated point(s): 

\[f\left( x \right) = \begin{cases}\frac{\left| x^2 - 1 \right|}{x - 1}, for & x \neq 1 \\ 2 , for & x = 1\end{cases}at x = 1\]

Discuss the continuity of the function f(x) at the point x = 1/2, where \[f\left( x \right) = \begin{cases}x, 0 \leq x < \frac{1}{2} \\ \frac{1}{2}, x = \frac{1}{2} \\ 1 - x, \frac{1}{2} < x \leq 1\end{cases}\] 


For what value of k is the following function continuous at x = 1? \[f\left( x \right) = \begin{cases}\frac{x^2 - 1}{x - 1}, & x \neq 1 \\ k , & x = 1\end{cases}\]


In each of the following, find the value of the constant k so that the given function is continuous at the indicated point;  \[f\left( x \right) = \begin{cases}\frac{x^2 - 25}{x - 5}, & x \neq 5 \\ k , & x = 5\end{cases}\]at x = 5


Determine if \[f\left( x \right) = \begin{cases}x^2 \sin\frac{1}{x} , & x \neq 0 \\ 0 , & x = 0\end{cases}\] is a continuous function?

 


Find all point of discontinuity of the function 

\[f\left( t \right) = \frac{1}{t^2 + t - 2}, \text{ where }  t = \frac{1}{x - 1}\]

If  \[f\left( x \right) = \begin{cases}\frac{{36}^x - 9^x - 4^x + 1}{\sqrt{2} - \sqrt{1 + \cos x}}, & x \neq 0 \\ k , & x = 0\end{cases}\]is continuous at x = 0, then k equals

 


The value of b for which the function 

\[f\left( x \right) = \begin{cases}5x - 4 , & 0 < x \leq 1 \\ 4 x^2 + 3bx , & 1 < x < 2\end{cases}\] is continuous at every point of its domain, is 

The values of the constants ab and c for which the function  \[f\left( x \right) = \begin{cases}\left( 1 + ax \right)^{1/x} , & x < 0 \\ b , & x = 0 \\ \frac{\left( x + c \right)^{1/3} - 1}{\left( x + 1 \right)^{1/2} - 1}, & x > 0\end{cases}\] may be continuous at x = 0, are

 


Let \[f\left( x \right) = \left( x + \left| x \right| \right) \left| x \right|\]


The set of points where the function f (x) = x |x| is differentiable is 

 


If \[f\left( x \right) = \left| \log_e x \right|, \text { then}\]


Examine the continuity of the following function :

`{:(,f(x),=(x^2-16)/(x-4),",","for "x!=4),(,,=8,",","for "x=4):}} " at " x=4`


The function f(x) = [x], where [x] denotes the greatest integer function, is continuous at ______.


For continuity, at x = a, each of `lim_(x -> "a"^+) "f"(x)` and `lim_(x -> "a"^-) "f"(x)` is equal to f(a).


f(x) = `{{:(|x - "a"| sin  1/(x - "a")",",  "if"  x ≠ 0),(0",",  "if"  x = "a"):}` at x = a


Find the values of p and q so that f(x) = `{{:(x^2 + 3x + "p"",",  "if"  x ≤ 1),("q"x + 2",",  "if"  x > 1):}` is differentiable at x = 1


An example of a function which is continuous everywhere but fails to be differentiable exactly at two points is ______.


Share
Notifications

Englishहिंदीमराठी


      Forgot password?
Use app×