हिंदी

Find the Values Of A And B So that the Function F(X) Defined by \[F\Left( X \Right) = \Begin{Cases}X + A\Sqrt{2}\Sin X , and \Text{ If }0 \Leq X < \Pi/4 \ 2x \Cot X + B , - Mathematics

Advertisements
Advertisements

प्रश्न

Find the values of a and b so that the function f(x) defined by f(x)={x+a2sinx, if 0x<π/42xcotx+b, if π/4x<π/2acos2xbsinx, if π/2xπbecomes continuous on [0, π].

योग

उत्तर

Given: is continuous on  [0,π] .

∴ is continuous at x =   π4 and  π2

At x =  π4, we have

limxπ4f(x)=limh0f(π4h)=limh0[(π4h)+a2sin(π4h)]=[π4+a2sin(π4)]=[π4+a]

limxπ4+f(x)=limh0f(π4+h)=limh0[2(π4+h)cot(π4+h)+b]=[π2cot(π4)+b]=[π2+b]

At xπ2 , we have

limxπ2f(x)=limh0f(π2h)=limh0[2(π2h)cot(π2h)+b]=b
limxπ2+f(x)=limh0f(π2+h)=limh0[acos2(π2+h)bsin(π2+h)]=ab
Since is continuous at x = π4and x = π2  we get 
limxπ2f(x)=limxπ2+f(x) and limxπ4f(x)=limxπ4+f(x)
ba=b and π4+a=π2+b
b=a2...(1) and π4=ba...(2)
π4=3a2[ Substituting the value of b in eq .(2)]
a=π6
b=π12[ From eq .(1)]


shaalaa.com
  क्या इस प्रश्न या उत्तर में कोई त्रुटि है?
अध्याय 9: Continuity - Exercise 9.2 [पृष्ठ ३६]

APPEARS IN

आरडी शर्मा Mathematics [English] Class 12
अध्याय 9 Continuity
Exercise 9.2 | Q 6 | पृष्ठ ३६

वीडियो ट्यूटोरियलVIEW ALL [4]

संबंधित प्रश्न

Determine the value of 'k' for which the following function is continuous at x = 3

f(x)={(x+3)2-36x-3 x3k x=3


Examine the following function for continuity:

f(x) = | x – 5|


Discuss the continuity of the function f, where f is defined by f(x)={2x,ifx<00,if0x14x,ifx>1


If f(x)={x21x1;forx12;forx=1 Find whether f(x) is continuous at x = 1.

 


Discuss the continuity of the following functions at the indicated point(s): 

f(x)={1xn1x,x1n1,x=1nNatx=1

Show that 

f(x)={1+x2,if0x12x,ifx>1


Discuss the continuity of the function f(x) at the point x = 1/2, where f(x)={x,0x<1212,x=121x,12<x1 


Determine the value of the constant k so that the function

f(x)={kx2,ifx23,ifx>2is continuous at x=2.


In each of the following, find the value of the constant k so that the given function is continuous at the indicated point;  f(x)={kx2,x14,x<1at x = 1

 


Prove that  f(x)={x|x|x,x02,x=0 is discontinuous at x = 0

 


If the functions f(x), defined below is continuous at x = 0, find the value of k. f(x)={1cos2x2x2,x<0k,x=0x|x|,x>0 

 


The value of f (0), so that the function 

f(x)=a2ax+x2a2+ax+x2a+xax   becomes continuous for all x, given by

If  f(x)={asinπ2(x+1),x0tanxsinxx3,x>0 is continuous at x = 0, then a equals


If  f(x)={sin(cosx)cosx(π2x)2,xπ2k,x=π2is continuous at x = π/2, then k is equal to


Show that f(x) = |x − 2| is continuous but not differentiable at x = 2. 


If f is defined by f (x) = x2, find f'(2).


Is every differentiable function continuous?


The function f (x) =  |cos x| is


If f(x)={11+e1/x,x00,x=0  then f (x) is 


Find k, if f(x) =log(1+3x)5x for x ≠ 0

                     = k                    for x = 0

is continuous at x = 0. 


Discuss the continuity of f at x = 1
Where f(X) = [3-2x+7x-1]           For x ≠ 1
                    = -13                                                 For x = 1


Find the value of 'k' if the function 
f(x) = tan7x2x,                   for x ≠ 0.
      = k                                        for x = 0.
is continuous at x = 0.


Examine the continuity of the following function :
f(x) = x2 - x + 9,          for x ≤ 3
      = 4x + 3,               for x > 3 
at x = 3.


 If the function f is continuous at x = I, then find f(1), where f(x) = x2-3x+2x-1, for x ≠ 1


The set of points where the functions f given by f(x) = |x – 3| cosx is differentiable is ______.


The number of points at which the function f(x) = 1log|x| is discontinuous is ______.


A continuous function can have some points where limit does not exist.


f(x) = {3x+5,if x2x2,if x<2 at x = 2


f(x) = {|x-a|sin 1x-a, if x00, if x=a at x = a


f(x) = {e1x1+e1x,if x00,if x=0 at x = 0 


f(x) = {x22, if 0x12x2-3x+32, if 1<x2 at x = 1


Find the values of a and b such that the function f defined by
f(x) = {x-4|x-4|+a, if x<4a+b, if x=4x-4|x-4|+b,if x>4
is a continuous function at x = 4.


Examine the differentiability of f, where f is defined by
f(x) = {x[x], if 0x<2(x-1)x, if 2x<3 at x = 2


Examine the differentiability of f, where f is defined by
f(x) = {x2sin 1x, if x00,if x=0 at x = 0


limx02 sin x - sin 2xx3 is equal to ____________.


The value of k (k < 0) for which the function f defined as

f(x) = {1-coskxxsinx, x012, x=0

is continuous at x = 0 is:


Share
Notifications

Englishहिंदीमराठी


      Forgot password?
Use app×
Our website is made possible by ad-free subscriptions or displaying online advertisements to our visitors.
If you don't like ads you can support us by buying an ad-free subscription or please consider supporting us by disabling your ad blocker. Thank you.