English

If F ( X ) = { M X + 1 , X ≤ π 2 Sin X + N , X > π 2 is Continuous at X = π 2 , Then - Mathematics

Advertisements
Advertisements

Question

If \[f\left( x \right) = \begin{cases}mx + 1 , & x \leq \frac{\pi}{2} \\ \sin x + n, & x > \frac{\pi}{2}\end{cases}\] is continuous at \[x = \frac{\pi}{2}\]  , then

 

Options

  • m = 1, n = 0

  •   \[m = \frac{n\pi}{2} + 1\] 

  • \[n = \frac{m\pi}{2}\] 

  • \[m = n = \frac{\pi}{2}\]

     

MCQ

Solution

  \[n = \frac{m\pi}{2}\]

Here,

\[f\left( \frac{\pi}{2} \right) = \frac{m\pi}{2} + 1\]
We have 
(LHL at  \[x = \frac{\pi}{2}\] = \[\lim_{x \to \frac{\pi}{2}^-} f\left( x \right) = \lim_{h \to 0} f\left( \frac{\pi}{2} - h \right) = \lim_{h \to 0} m\left( \frac{\pi}{2} - h \right) + 1 = \frac{m\pi}{2} + 1\]
(RHL at   \[x = \frac{\pi}{2}\] = \[\lim_{x \to \frac{\pi}{2}^+} f\left( x \right) = \lim_{h \to 0} f\left( \frac{\pi}{2} + h \right) = \lim_{h \to 0} \left[ \sin\left( \frac{\pi}{2} + h \right) + n \right] = n + 1\] 
Thus,
If  \[f\left( x \right)\] is continuous at  \[x = \frac{\pi}{2}\] then  
\[\lim_{x \to \frac{\pi}{2}^-} f\left( x \right) = \lim_{x \to \frac{\pi}{2}^+} f\left( x \right)\]
\[\Rightarrow \frac{m\pi}{2} + 1 = n + 1\]
\[ \Rightarrow \frac{m\pi}{2} = n\]
shaalaa.com
  Is there an error in this question or solution?
Chapter 9: Continuity - Exercise 9.4 [Page 44]

APPEARS IN

RD Sharma Mathematics [English] Class 12
Chapter 9 Continuity
Exercise 9.4 | Q 15 | Page 44

RELATED QUESTIONS

Examine the continuity of the following function :

`{:(,,f(x)= x^2 -x+9,"for",x≤3),(,,=4x+3,"for",x>3):}}"at "x=3`


If f(x)= `{((sin(a+1)x+2sinx)/x,x<0),(2,x=0),((sqrt(1+bx)-1)/x,x>0):}`

is continuous at x = 0, then find the values of a and b.


Examine the following function for continuity:

`f (x)1/(x - 5), x != 5`


Examine the following function for continuity:

`f(x) = (x^2 - 25)/(x + 5), x != -5`


Discuss the continuity of the following functions at the indicated point(s): (iv) \[f\left( x \right) = \left\{ \begin{array}{l}\frac{e^x - 1}{\log(1 + 2x)}, if & x \neq a \\ 7 , if & x = 0\end{array}at x = 0 \right.\]


Discuss the continuity of the following functions at the indicated point(s): 

\[f\left( x \right) = \begin{cases}\frac{\left| x^2 - 1 \right|}{x - 1}, for & x \neq 1 \\ 2 , for & x = 1\end{cases}at x = 1\]

For what value of k is the following function continuous at x = 1? \[f\left( x \right) = \begin{cases}\frac{x^2 - 1}{x - 1}, & x \neq 1 \\ k , & x = 1\end{cases}\]


Find the points of discontinuity, if any, of the following functions: 

\[f\left( x \right) = \begin{cases}\frac{e^x - 1}{\log_e (1 + 2x)}, & \text{ if }x \neq 0 \\ 7 , & \text{ if } x = 0\end{cases}\]

If the function \[f\left( x \right) = \begin{cases}\left( \cos x \right)^{1/x} , & x \neq 0 \\ k , & x = 0\end{cases}\] is continuous at x = 0, then the value of k is


Let f (x) = | x | + | x − 1|, then


The value of k which makes \[f\left( x \right) = \begin{cases}\sin\frac{1}{x}, & x \neq 0 \\ k , & x = 0\end{cases}\]    continuous at x = 0, is

 


The points of discontinuity of the function 

\[f\left( x \right) = \begin{cases}2\sqrt{x} , & 0 \leq x \leq 1 \\ 4 - 2x , & 1 < x < \frac{5}{2} \\ 2x - 7 , & \frac{5}{2} \leq x \leq 4\end{cases}\text{ is } \left( \text{ are }\right)\] 


Show that f(x) = x1/3 is not differentiable at x = 0.


If \[f\left( x \right) = \begin{cases}a x^2 - b, & \text { if }\left| x \right| < 1 \\ \frac{1}{\left| x \right|} , & \text { if }\left| x \right| \geq 1\end{cases}\]  is differentiable at x = 1, find a, b.


Discuss the continuity and differentiability of f (x) = |log |x||.


Discuss the continuity and differentiability of f (x) = e|x| .


Is every continuous function differentiable?


Give an example of a function which is continuos but not differentiable at at a point.


If f (x) = |3 − x| + (3 + x), where (x) denotes the least integer greater than or equal to x, then f (x) is


Find k, if f(x) =`log (1+3x)/(5x)` for x ≠ 0

                     = k                    for x = 0

is continuous at x = 0. 


Discuss continuity of f(x) =`(x^3-64)/(sqrt(x^2+9)-5)` For x ≠ 4 

= 10 for x = 4  at x = 4


The total cost C for producing x units is Rs (x2 + 60x + 50) and the price is Rs (180 - x) per unit. For how many units the profit is maximum.


If f(x) = `(e^(2x) - 1)/(ax)` .                for x < 0 , a ≠ 0
         = 1.                             for x = 0
         = `(log(1 + 7x))/(bx)`.        for x > 0 , b ≠ 0
is continuous at x = 0 . then find a and b


 If the function f (x) = `(15^x - 3^x - 5^x + 1)/(x tanx)`,  x ≠ 0 is continuous at x = 0 , then find f(0).


If y = ( sin x )x , Find `dy/dx`


Discuss the continuity of function f at x = 0.
Where f(X) = `[ [sqrt ( 4 + x ) - 2 ]/ ( 3x )]`, For x ≠ 0
                  = `1/12`,                      For x = 0


The probability distribution function of continuous random variable X is given by
f( x ) = `x/4`,  0 < x < 2
        = 0,       Otherwise
Find P( x ≤ 1)


Discuss the continuity of the function `f(x) = (3 - sqrt(2x + 7))/(x - 1)` for x ≠ 1

= `-1/3`   for x = 1, at x = 1


Let f(x) = `{{:((1 - cos 4x)/x^2",",  "if"  x < 0),("a"",",  "if"  x = 0),(sqrt(x)/(sqrt(16) + sqrt(x) - 4)",", "if"  x > 0):}`. For what value of a, f is continuous at x = 0?


For continuity, at x = a, each of `lim_(x -> "a"^+) "f"(x)` and `lim_(x -> "a"^-) "f"(x)` is equal to f(a).


f(x) = `{{:(3x + 5",", "if"  x ≥ 2),(x^2",", "if"  x < 2):}` at x = 2


f(x) = `{{:(3x - 8",",  "if"  x ≤ 5),(2"k"",",  "if"  x > 5):}` at x = 5


Find the values of a and b such that the function f defined by
f(x) = `{{:((x - 4)/(|x - 4|) + "a"",",  "if"  x < 4),("a" + "b"",",  "if"  x = 4),((x - 4)/(|x - 4|) + "b"",", "if"  x > 4):}`
is a continuous function at x = 4.


Given the function f(x) = `1/(x + 2)`. Find the points of discontinuity of the composite function y = f(f(x))


If f(x) = `{{:("m"x + 1",",  "if"  x ≤ pi/2),(sin x + "n"",",  "If"  x > pi/2):}`, is continuous at x = `pi/2`, then ______.


The composition of two continuous function is a continuous function.


Share
Notifications

Englishहिंदीमराठी


      Forgot password?
Use app×