मराठी

If F ( X ) = ⎧ ⎪ ⎪ ⎪ ⎨ ⎪ ⎪ ⎪ ⎩ Sin ( a + 1 ) X + Sin X X , X < 0 C , X = 0 √ X + B X 2 − √ X B X √ X , X > 0 is Continuous at X = 0, Then - Mathematics

Advertisements
Advertisements

प्रश्न

If  \[f\left( x \right) = \begin{cases}\frac{\sin (a + 1) x + \sin x}{x} , & x < 0 \\ c , & x = 0 \\ \frac{\sqrt{x + b x^2} - \sqrt{x}}{bx\sqrt{x}} , & x > 0\end{cases}\]is continuous at x = 0, then 

पर्याय

  • a =  \[- \frac{3}{2}\] , b = 0, c = \[\frac{1}{2}\]

  •  a = \[- \frac{3}{2}\] , b = 1, c = \[- \frac{1}{2}\] 

  • a =\[- \frac{3}{2}\], b ∈ R − {0}, c = \[\frac{1}{2}\] 

  • none of these

MCQ

उत्तर

a =\[- \frac{3}{2}\], b ∈ R − {0}, c = \[\frac{1}{2}\] 

The given function can be rewritten as
\[f\left( x \right) = \begin{cases}\frac{\sin \left( a + 1 \right) x + x \sin x}{x}, \text{ for}  x < 0 \\ c ,\text{  for }  x = 0 \\ \frac{\sqrt{x + b x^2} - \sqrt{x}}{b x^\frac{3}{2}} , \text{ for } x > 0\end{cases}\]
\[\Rightarrow f\left( x \right) = \begin{cases}\frac{\sin \left( a + 1 \right)x + \sin x}{x}, \text{ for }  x < 0 \\ c , \text{ for } x = 0 \\ \frac{\sqrt{1 + bx} - 1}{bx} , \text{ for }  x > 0\end{cases}\]

We have
(LHL at x = 0) =  \[\lim_{x \to 0^-} f\left( x \right) = \lim_{h \to 0} f\left( 0 - h \right) = \lim_{h \to 0} f\left( - h \right)\]

\[= \lim_{h \to 0} \left[ \frac{- \sin \left( a + 1 \right)h - \sin \left( - h \right)}{h} \right] = \lim_{h \to 0} \left[ \frac{- \sin \left( a + 1 \right)h}{h} - \frac{\sin h}{h} \right]\]
\[= - \left( a + 1 \right) \lim_{h \to 0} \left[ \frac{\sin \left( a + 1 \right)h}{\left( a + 1 \right)h} \right] - \lim_{h \to 0} \frac{\sin h}{h} = - a - 1\]

(RHL at x = 0) =  \[\lim_{x \to 0^+} f\left( x \right) = \lim_{h \to 0} f\left( 0 + h \right) = \lim_{h \to 0} f\left( h \right)\]

\[\lim_{h \to 0} \left( \frac{\sqrt{1 + bh} - 1}{bh} \right) = \lim_{h \to 0} \left( \frac{bh}{bh\left( \sqrt{1 + bh} + 1 \right)} \right) = \lim_{h \to 0} \left( \frac{1}{\left( \sqrt{1 + bh} + 1 \right)} \right) = \frac{1}{2}\]

Also,  \[f\left( 0 \right) = c\] 

If  \[f\left( x \right)\]  is continuous at x = 0, then

\[\lim_{x \to 0^-} f\left( x \right) = \lim_{x \to 0^+} f\left( x \right) = f\left( 0 \right)\] 
\[\Rightarrow - a - 1 = \frac{1}{2} = c\]
\[\Rightarrow - a - 1 = \frac{1}{2} \text{ and } c = \frac{1}{2}\]
\[\Rightarrow a = \frac{- 3}{2}\] \[, c = \frac{1}{2}\]

Now,

\[\frac{\sqrt{1 + bx} - 1}{bx}\]  exists only if  \[bx \neq 0 \Rightarrow b \neq 0\]
Thus,  \[b \in R - \left\{ 0 \right\}\]. 
shaalaa.com
  या प्रश्नात किंवा उत्तरात काही त्रुटी आहे का?
पाठ 9: Continuity - Exercise 9.4 [पृष्ठ ४४]

APPEARS IN

आरडी शर्मा Mathematics [English] Class 12
पाठ 9 Continuity
Exercise 9.4 | Q 14 | पृष्ठ ४४

व्हिडिओ ट्यूटोरियलVIEW ALL [4]

संबंधित प्रश्‍न

If f(x)= `{((sin(a+1)x+2sinx)/x,x<0),(2,x=0),((sqrt(1+bx)-1)/x,x>0):}`

is continuous at x = 0, then find the values of a and b.


Examine the following function for continuity:

`f (x)1/(x - 5), x != 5`


Discuss the continuity of the function f, where f is defined by `f(x) = {(-2,"," if x <= -1),(2x, "," if -1 < x <= 1),(2, "," if x > 1):}`


A function f(x) is defined as 

\[f\left( x \right) = \begin{cases}\frac{x^2 - 9}{x - 3}; if & x \neq 3 \\ 6 ; if & x = 3\end{cases}\]

Show that f(x) is continuous at x = 3

 

Show that

\[f\left( x \right)\] = \begin{cases}\frac{x - \left| x \right|}{2}, when & x \neq 0 \\ 2 , when & x = 0\end{cases}

is discontinuous at x = 0.

 

In each of the following, find the value of the constant k so that the given function is continuous at the indicated point;  \[f\left( x \right) = \begin{cases}\frac{x^2 - 25}{x - 5}, & x \neq 5 \\ k , & x = 5\end{cases}\]at x = 5


Write the value of b for which \[f\left( x \right) = \begin{cases}5x - 4 & 0 < x \leq 1 \\ 4 x^2 + 3bx & 1 < x < 2\end{cases}\]  is continuous at x = 1.

 


The function 

\[f\left( x \right) = \frac{4 - x^2}{4x - x^3}\]

 


If the function \[f\left( x \right) = \begin{cases}\left( \cos x \right)^{1/x} , & x \neq 0 \\ k , & x = 0\end{cases}\] is continuous at x = 0, then the value of k is


The value of f (0) so that the function 

\[f\left( x \right) = \frac{2 - \left( 256 - 7x \right)^{1/8}}{\left( 5x + 32 \right)^{1/5} - 2},\]  0 is continuous everywhere, is given by


\[f\left( x \right) = \begin{cases}\frac{\sqrt{1 + px} - \sqrt{1 - px}}{x}, & - 1 \leq x < 0 \\ \frac{2x + 1}{x - 2} , & 0 \leq x \leq 1\end{cases}\]is continuous in the interval [−1, 1], then p is equal to

 


If  \[f\left( x \right) = \left\{ \begin{array}a x^2 + b , & 0 \leq x < 1 \\ 4 , & x = 1 \\ x + 3 , & 1 < x \leq 2\end{array}, \right.\] then the value of (ab) for which f (x) cannot be continuous at x = 1, is

 


Show that \[f\left( x \right) =\]`{(12x, -,13, if , x≤3),(2x^2, +,5, if x,>3):}` is differentiable at x = 3. Also, find f'(3).


Show that the function 

\[f\left( x \right) = \begin{cases}\left| 2x - 3 \right| \left[ x \right], & x \geq 1 \\ \sin \left( \frac{\pi x}{2} \right), & x < 1\end{cases}\] is continuous but not differentiable at x = 1.


Is every continuous function differentiable?


If f (x) is differentiable at x = c, then write the value of 

\[\lim_{x \to c} f \left( x \right)\]

Write the points where f (x) = |loge x| is not differentiable.


Write the number of points where f (x) = |x| + |x − 1| is continuous but not differentiable.


Let \[f\left( x \right) = \begin{cases}\frac{1}{\left| x \right|} & for \left| x \right| \geq 1 \\ a x^2 + b & for \left| x \right| < 1\end{cases}\] If f (x) is continuous and differentiable at any point, then

 

 

 


Examine the continuity of f(x)=`x^2-x+9  "for"  x<=3`

=`4x+3  "for"  x>3,  "at"  x=3` 


Discuss the continuity of f at x = 1 ,
Where f(x) = `(3 - sqrt(2x + 7))/(x - 1)` for x = ≠ 1
= `(-1)/3`   for x = 1


If f is continuous at x = 0 then find f(0) where f(x) = `[5^x + 5^-x - 2]/x^2`, x ≠ 0


Discuss the continuity of the function f at x = 0

If f(x) = `(2^(3x) - 1)/tanx`, for x ≠ 0

         = 1,   for x = 0


If f(x) = `(e^(2x) - 1)/(ax)` .                for x < 0 , a ≠ 0
         = 1.                             for x = 0
         = `(log(1 + 7x))/(bx)`.        for x > 0 , b ≠ 0
is continuous at x = 0 . then find a and b


If f (x) = `(1 - "sin x")/(pi - "2x")^2` , for x ≠ `pi/2` is continuous at x = `pi/4` , then find `"f"(pi/2) .`


The probability distribution function of continuous random variable X is given by
f( x ) = `x/4`,  0 < x < 2
        = 0,       Otherwise
Find P( x ≤ 1)


Discuss the continuity of the function at the point given. If the function is discontinuous, then remove the discontinuity.

f (x) = `(sin^2 5x)/x^2` for x ≠ 0 
= 5   for x = 0, at x = 0


If Y = tan-1 `[(cos 2x - sin 2x)/(sin2x + cos 2x)]` then find `(dy)/(dx)`


If f(x) = `{{:((x^3 + x^2 - 16x + 20)/(x - 2)^2",", x ≠ 2),("k"",", x = 2):}` is continuous at x = 2, find the value of k.


The function given by f (x) = tanx is discontinuous on the set ______.


The number of points at which the function f(x) = `1/(log|x|)` is discontinuous is ______.


f(x) = `{{:(|x - "a"| sin  1/(x - "a")",",  "if"  x ≠ 0),(0",",  "if"  x = "a"):}` at x = a


f(x) = |x| + |x − 1| at x = 1


Prove that the function f defined by 
f(x) = `{{:(x/(|x| + 2x^2)",",  x ≠ 0),("k",  x = 0):}`
remains discontinuous at x = 0, regardless the choice of k.


Examine the differentiability of f, where f is defined by
f(x) = `{{:(x[x]",",  "if"  0 ≤ x < 2),((x - 1)x",",  "if"  2 ≤ x < 3):}` at x = 2


Examine the differentiability of f, where f is defined by
f(x) = `{{:(1 + x",",  "if"  x ≤ 2),(5 - x",",  "if"  x > 2):}` at x = 2


Find the values of p and q so that f(x) = `{{:(x^2 + 3x + "p"",",  "if"  x ≤ 1),("q"x + 2",",  "if"  x > 1):}` is differentiable at x = 1


The composition of two continuous function is a continuous function.


Share
Notifications

Englishहिंदीमराठी


      Forgot password?
Use app×