Advertisements
Advertisements
प्रश्न
If f (x) = |3 − x| + (3 + x), where (x) denotes the least integer greater than or equal to x, then f (x) is
विकल्प
continuous and differentiable at x = 3
continuous but not differentiable at x = 3
differentiable nut not continuous at x = 3
neither differentiable nor continuous at x = 3
उत्तर
(d) neither differentiable nor continuous at x = 3
We have,
\[f\left( x \right) = \left| 3 - x \right| + \left( 3 + x \right), \text { where } \left( x \right) \text{denotes the least integer greater than or equal to} x . \]
`f(x) = {(3-x +3+3,2<x<3),(-3 +x + 3 +4,3<x<4):}`
`⇒ f(x) = {(-x +9,2<x<3),(x+4 , 3<x<4):}`
Here,
\[\left( \text { LHL at x } = 3 \right) = \lim_{x \to 3^-} f\left( x \right) = \lim_{x \to 3^-} \left( - x + 9 \right) = - 3 + 9 = 6\]
\[\left( \text { RHL at x }= 3 \right) = \lim_{x \to 3^+} f\left( x \right) = \lim_{x \to 3^-} \left( x + 4 \right) = 3 + 4 = 7\]
\[\text { Since, } \left( \text { LHL at x } = 3 \right) \neq \left( \text { RHL at x }= 3 \right)\]
\[\text{Hence, given function is not continuous at x} = 3\]
\[\text{Therefore, the function will also not be differentiable at} x = 3\]
APPEARS IN
संबंधित प्रश्न
Examine the continuity of the following function :
`{:(,,f(x)= x^2 -x+9,"for",x≤3),(,,=4x+3,"for",x>3):}}"at "x=3`
If f(x)= `{((sin(a+1)x+2sinx)/x,x<0),(2,x=0),((sqrt(1+bx)-1)/x,x>0):}`
is continuous at x = 0, then find the values of a and b.
Discuss the continuity of the following functions at the indicated point(s):
Discuss the continuity of the following functions at the indicated point(s):
Determine the value of the constant k so that the function
\[f\left( x \right) = \left\{ \begin{array}{l}\frac{x^2 - 3x + 2}{x - 1}, if & x \neq 1 \\ k , if & x = 1\end{array}\text{is continuous at x} = 1 \right.\]
Find the value of k for which \[f\left( x \right) = \begin{cases}\frac{1 - \cos 4x}{8 x^2}, \text{ when} & x \neq 0 \\ k ,\text{ when } & x = 0\end{cases}\] is continuous at x = 0;
In each of the following, find the value of the constant k so that the given function is continuous at the indicated point; \[f\left( x \right) = \begin{cases}k( x^2 + 2), \text{if} & x \leq 0 \\ 3x + 1 , \text{if} & x > 0\end{cases}\]
Discuss the continuity of the f(x) at the indicated points: f(x) = | x − 1 | + | x + 1 | at x = −1, 1.
Determine if \[f\left( x \right) = \begin{cases}x^2 \sin\frac{1}{x} , & x \neq 0 \\ 0 , & x = 0\end{cases}\] is a continuous function?
Define continuity of a function at a point.
Write the value of b for which \[f\left( x \right) = \begin{cases}5x - 4 & 0 < x \leq 1 \\ 4 x^2 + 3bx & 1 < x < 2\end{cases}\] is continuous at x = 1.
Let f (x) = | x | + | x − 1|, then
If \[f\left( x \right) = \begin{cases}\frac{\sin (a + 1) x + \sin x}{x} , & x < 0 \\ c , & x = 0 \\ \frac{\sqrt{x + b x^2} - \sqrt{x}}{bx\sqrt{x}} , & x > 0\end{cases}\]is continuous at x = 0, then
If \[f\left( x \right) = \begin{cases}mx + 1 , & x \leq \frac{\pi}{2} \\ \sin x + n, & x > \frac{\pi}{2}\end{cases}\] is continuous at \[x = \frac{\pi}{2}\] , then
If \[f\left( x \right) = \begin{cases}a \sin\frac{\pi}{2}\left( x + 1 \right), & x \leq 0 \\ \frac{\tan x - \sin x}{x^3}, & x > 0\end{cases}\] is continuous at x = 0, then a equals
The value of k which makes \[f\left( x \right) = \begin{cases}\sin\frac{1}{x}, & x \neq 0 \\ k , & x = 0\end{cases}\] continuous at x = 0, is
Show that f(x) = |x − 2| is continuous but not differentiable at x = 2.
Find whether the function is differentiable at x = 1 and x = 2
Show that the function
\[f\left( x \right) = \begin{cases}\left| 2x - 3 \right| \left[ x \right], & x \geq 1 \\ \sin \left( \frac{\pi x}{2} \right), & x < 1\end{cases}\] is continuous but not differentiable at x = 1.
If f is defined by f (x) = x2, find f'(2).
Discuss the continuity and differentiability of f (x) = |log |x||.
Give an example of a function which is continuos but not differentiable at at a point.
The set of points where the function f (x) given by f (x) = |x − 3| cos x is differentiable, is
Let \[f\left( x \right) = \begin{cases}1 , & x \leq - 1 \\ \left| x \right|, & - 1 < x < 1 \\ 0 , & x \geq 1\end{cases}\] Then, f is
If f is continuous at x = 0 then find f(0) where f(x) = `[5^x + 5^-x - 2]/x^2`, x ≠ 0
The total cost C for producing x units is Rs (x2 + 60x + 50) and the price is Rs (180 - x) per unit. For how many units the profit is maximum.
If f(x) = `(e^(2x) - 1)/(ax)` . for x < 0 , a ≠ 0
= 1. for x = 0
= `(log(1 + 7x))/(bx)`. for x > 0 , b ≠ 0
is continuous at x = 0 . then find a and b
Find `dy/dx if y = tan^-1 ((6x)/[ 1 - 5x^2])`
If the function f is continuous at x = 2, then find 'k' where
f(x) = `(x^2 + 5)/(x - 1),` for 1< x ≤ 2
= kx + 1 , for x > 2
Discuss the continuity of the function f at x = 0, where
f(x) = `(5^x + 5^-x - 2)/(cos2x - cos6x),` for x ≠ 0
= `1/8(log 5)^2,` for x = 0
For continuity, at x = a, each of `lim_(x -> "a"^+) "f"(x)` and `lim_(x -> "a"^-) "f"(x)` is equal to f(a).
A continuous function can have some points where limit does not exist.
Examine the differentiability of f, where f is defined by
f(x) = `{{:(1 + x",", "if" x ≤ 2),(5 - x",", "if" x > 2):}` at x = 2
If f(x) = `{{:("m"x + 1",", "if" x ≤ pi/2),(sin x + "n"",", "If" x > pi/2):}`, is continuous at x = `pi/2`, then ______.
Write the number of points where f(x) = |x + 2| + |x - 3| is not differentiable.