Advertisements
Advertisements
प्रश्न
Let f (x) = a + b |x| + c |x|4, where a, b, and c are real constants. Then, f (x) is differentiable at x = 0, if
विकल्प
a = 0
b = 0
c = 0
none of these
उत्तर
(b) b = 0
We have,
\[f\left( x \right) = a + b\left| x \right| + c \left| x \right|^4 \]
`f(x) = {(a +bx +c|x|^4 ,xge 0),(a-bx +cx^4,x<0):}`
\[\text { Here }, f\left( x \right)\text { is differentiable at x = 0 }\]
\[ \therefore \left(\text { LHD at x } = 0 \right) = \left(\text { RHD at x }= 0 \right)\]
\[ \Rightarrow \lim_{x \to 0^-} \frac{f\left( x \right) - f\left( 0 \right)}{x - 0} = \lim_{x \to 0^+} \frac{f\left( x \right) - f\left( 0 \right)}{x - 0}\]
\[ \Rightarrow \lim_{x \to 0^-} \frac{a - bx + c x^4 - a}{x} = \lim_{x \to 0^+} \frac{a + bx + c x^4 - a}{x}\]
\[ \Rightarrow \lim_{h \to 0} \frac{a - b\left( 0 - h \right) + c \left( 0 - h \right)^4 - a}{0 - h} = \lim_{h \to 0} \frac{a + b\left( 0 + h \right) + c \left( 0 + h \right)^4 - a}{0 + h}\]
\[ \Rightarrow \lim_{h \to 0} \frac{a + bh + c h^4 - a}{- h} = \lim_{h \to 0} \frac{a + bh + c h^4 - a}{h}\]
\[ \Rightarrow \lim_{h \to 0} \frac{bh + c h^4}{- h} = \lim_{h \to 0} \frac{bh + c h^4}{h}\]
\[ \Rightarrow \lim_{h \to 0} \left( - b - c h^3 \right) = \lim_{h \to 0} \left( b + c h^3 \right)\]
\[ \Rightarrow - b = b\]
\[ \Rightarrow 2b = 0\]
\[ \Rightarrow b = 0\]
APPEARS IN
संबंधित प्रश्न
A function f (x) is defined as
f (x) = x + a, x < 0
= x, 0 ≤x ≤ 1
= b- x, x ≥1
is continuous in its domain.
Find a + b.
Discuss the continuity of the following function:
f (x) = sin x × cos x
Find the values of k so that the function f is continuous at the indicated point.
`f(x) = {(kx +1, if x<= pi),(cos x, if x > pi):} " at x " = pi`
Examine sin |x| is a continuous function.
Determine the value of the constant k so that the function
\[f\left( x \right) = \begin{cases}\frac{\sin 2x}{5x}, if & x \neq 0 \\ k , if & x = 0\end{cases}\text{is continuous at x} = 0 .\]
Find the values of a so that the function
If \[f\left( x \right) = \frac{2x + 3\ \text{ sin }x}{3x + 2\ \text{ sin } x}, x \neq 0\] If f(x) is continuous at x = 0, then find f (0).
In each of the following, find the value of the constant k so that the given function is continuous at the indicated point; \[f\left( x \right) = \begin{cases}\frac{1 - \cos 2kx}{x^2}, \text{ if } & x \neq 0 \\ 8 , \text{ if } & x = 0\end{cases}\] at x = 0
In each of the following, find the value of the constant k so that the given function is continuous at the indicated point; \[f\left( x \right) = \begin{cases}(x - 1)\tan\frac{\pi x}{2}, \text{ if } & x \neq 1 \\ k , if & x = 1\end{cases}\] at x = 1at x = 1
If \[f\left( x \right) = \begin{cases}2 x^2 + k, &\text{ if } x \geq 0 \\ - 2 x^2 + k, & \text{ if } x < 0\end{cases}\] then what should be the value of k so that f(x) is continuous at x = 0.
Find the points of discontinuity, if any, of the following functions: \[f\left( x \right) = \begin{cases}\frac{\sin x}{x}, & \text{ if } x < 0 \\ 2x + 3, & x \geq 0\end{cases}\]
In the following, determine the value of constant involved in the definition so that the given function is continuou: \[f\left( x \right) = \begin{cases}kx + 5, & \text{ if } x \leq 2 \\ x - 1, & \text{ if } x > 2\end{cases}\]
Show that the function g (x) = x − [x] is discontinuous at all integral points. Here [x] denotes the greatest integer function.
Show that f (x) = | cos x | is a continuous function.
Determine whether \[f\left( x \right) = \binom{\frac{\sin x^2}{x}, x \neq 0}{0, x = 0}\] is continuous at x = 0 or not.
If \[f\left( x \right) = \binom{\frac{1 - \cos x}{x^2}, x \neq 0}{k, x = 0}\] is continuous at x = 0, find k.
If f (x) = (x + 1)cot x be continuous at x = 0, then f (0) is equal to
If \[f\left( x \right) = \frac{1 - \sin x}{\left( \pi - 2x \right)^2},\] when x ≠ π/2 and f (π/2) = λ, then f (x) will be continuous function at x= π/2, where λ =
If the function \[f\left( x \right) = \frac{2x - \sin^{- 1} x}{2x + \tan^{- 1} x}\] is continuous at each point of its domain, then the value of f (0) is
If \[f\left( x \right) = x \sin\frac{1}{x}, x \neq 0,\]then the value of the function at x = 0, so that the function is continuous at x = 0, is
Find the values of a and b so that the function
Find the values of a and b, if the function f defined by
If f is defined by \[f\left( x \right) = x^2 - 4x + 7\] , show that \[f'\left( 5 \right) = 2f'\left( \frac{7}{2} \right)\]
If \[f\left( x \right) = \begin{cases}\frac{\left| x + 2 \right|}{\tan^{- 1} \left( x + 2 \right)} & , x \neq - 2 \\ 2 & , x = - 2\end{cases}\] then f (x) is
Let f (x) = |cos x|. Then,
The function f(x) = `(4 - x^2)/(4x - x^3)` is ______.
`lim_("x"-> pi) (1 + "cos"^2 "x")/("x" - pi)^2` is equal to ____________.
`lim_("x" -> 0) (1 - "cos" 4 "x")/"x"^2` is equal to ____________.
If `f`: R → {0, 1} is a continuous surjection map then `f^(-1) (0) ∩ f^(-1) (1)` is:
If `f(x) = {{:(-x^2",", "when" x ≤ 0),(5x - 4",", "when" 0 < x ≤ 1),(4x^2 - 3x",", "when" 1 < x < 2),(3x + 4",", "when" x ≥ 2):}`, then
The function f(x) = x2 – sin x + 5 is continuous at x =
The value of ‘k’ for which the function f(x) = `{{:((1 - cos4x)/(8x^2)",", if x ≠ 0),(k",", if x = 0):}` is continuous at x = 0 is ______.
Discuss the continuity of the following function:
f(x) = sin x + cos x