हिंदी

If F ( X ) = X Sin 1 X , X ≠ 0 , Then the Value of the Function at X = 0, So that the Function is Continuous at X = 0, Is(A) 0 (B) −1 (C) 1 (D) Indeterminate - Mathematics

Advertisements
Advertisements

प्रश्न

If  \[f\left( x \right) = x \sin\frac{1}{x}, x \neq 0,\]then the value of the function at = 0, so that the function is continuous at x = 0, is

 

विकल्प

  • 0

  • −1

  • 1

  • indeterminate

MCQ

उत्तर

Given: 

\[f\left( x \right) = x \sin\frac{1}{x}, x \neq 0\]

Here,

\[\lim_{x \to 0} x \sin \left( \frac{1}{x} \right) = \lim_{x \to 0} x \lim_{x \to 0} \sin\left( \frac{1}{x} \right) = 0 \times \lim_{x \to 0} \sin\left( \frac{1}{x} \right) = 0\]

If f(x) is continuous at x = 0, then

\[\lim_{x \to 0} f\left( x \right) = f\left( 0 \right)\]
\[\Rightarrow f\left( 0 \right) = 0\]
shaalaa.com
  क्या इस प्रश्न या उत्तर में कोई त्रुटि है?
अध्याय 9: Continuity - Exercise 9.4 [पृष्ठ ४६]

APPEARS IN

आरडी शर्मा Mathematics [English] Class 12
अध्याय 9 Continuity
Exercise 9.4 | Q 35 | पृष्ठ ४६

वीडियो ट्यूटोरियलVIEW ALL [3]

संबंधित प्रश्न

Show that the function defined by f (x) = cos (x2) is a continuous function.


Show that the function defined by f(x) = |cos x| is a continuous function.


Examine sin |x| is a continuous function.


Examine the continuity of the function  

\[f\left( x \right) = \left\{ \begin{array}{l}3x - 2, & x \leq 0 \\ x + 1 , & x > 0\end{array}at x = 0 \right.\]

Also sketch the graph of this function.


Determine the value of the constant k so that the function

\[f\left( x \right) = \begin{cases}\frac{\sin 2x}{5x}, if & x \neq 0 \\ k , if & x = 0\end{cases}\text{is continuous at x} = 0 .\]

 


Let  \[f\left( x \right) = \frac{\log\left( 1 + \frac{x}{a} \right) - \log\left( 1 - \frac{x}{b} \right)}{x}\] x ≠ 0. Find the value of f at x = 0 so that f becomes continuous at x = 0.

 


Extend the definition of the following by continuity 

\[f\left( x \right) = \frac{1 - \cos7 (x - \pi)}{5 (x - \pi )^2}\]  at the point x = π.

In each of the following, find the value of the constant k so that the given function is continuous at the indicated point; \[f\left( x \right) = \begin{cases}(x - 1)\tan\frac{\pi  x}{2}, \text{ if } & x \neq 1 \\ k , if & x = 1\end{cases}\] at x = 1at x = 1


If  \[f\left( x \right) = \begin{cases}2 x^2 + k, &\text{ if }  x \geq 0 \\ - 2 x^2 + k, & \text{ if }  x < 0\end{cases}\]  then what should be the value of k so that f(x) is continuous at x = 0.

 


Find the points of discontinuity, if any, of the following functions: 

\[f\left( x \right) = \begin{cases}x^3 - x^2 + 2x - 2, & \text{ if }x \neq 1 \\ 4 , & \text{ if } x = 1\end{cases}\]

 


The function  \[f\left( x \right) = \begin{cases}x^2 /a , & \text{ if } 0 \leq x < 1 \\ a , & \text{ if } 1 \leq x < \sqrt{2} \\ \frac{2 b^2 - 4b}{x^2}, & \text{ if }  \sqrt{2} \leq x < \infty\end{cases}\] is continuous on (0, ∞), then find the most suitable values of a and b.


Discuss the continuity of the following functions:
(i) f(x) = sin x + cos x
(ii) f(x) = sin x − cos x
(iii) f(x) = sin x cos x


If \[f\left( x \right) = \begin{cases}\frac{x}{\sin 3x}, & x \neq 0 \\ k , & x = 0\end{cases}\]  is continuous at x = 0, then write the value of k.


If the function   \[f\left( x \right) = \frac{\sin 10x}{x}, x \neq 0\] is continuous at x = 0, find f (0).

 


Determine the value of the constant 'k' so that function 

\[\left( x \right) = \begin{cases}\frac{kx}{\left| x \right|}, &\text{ if }  x < 0 \\ 3 , & \text{ if } x \geq 0\end{cases}\]  is continuous at x  = 0  . 

 then f (x) is continuous for all
\[f\left( x \right) = \begin{cases}\frac{\left| x^2 - x \right|}{x^2 - x}, & x \neq 0, 1 \\ 1 , & x = 0 \\ - 1 , & x = 1\end{cases}\]  then f (x) is continuous for all

If \[f\left( x \right) = \begin{cases}\frac{1 - \sin x}{\left( \pi - 2x \right)^2} . \frac{\log \sin x}{\log\left( 1 + \pi^2 - 4\pi x + 4 x^2 \right)}, & x \neq \frac{\pi}{2} \\ k , & x = \frac{\pi}{2}\end{cases}\]is continuous at x = π/2, then k =

 


If  \[f\left( x \right) = \begin{cases}\frac{\log\left( 1 + ax \right) - \log\left( 1 - bx \right)}{x}, & x \neq 0 \\ k , & x = 0\end{cases}\] and f (x) is continuous at x = 0, then the value of k is


Let  \[f\left( x \right) = \left\{ \begin{array}\\ \frac{x - 4}{\left| x - 4 \right|} + a, & x < 4 \\ a + b , & x = 4 \\ \frac{x - 4}{\left| x - 4 \right|} + b, & x > 4\end{array} . \right.\]Then, f (x) is continuous at x = 4 when

 

 


The function 

\[f\left( x \right) = \begin{cases}x^2 /a , & 0 \leq x < 1 \\ a , & 1 \leq x < \sqrt{2} \\ \frac{2 b^2 - 4b}{x^2}, & \sqrt{2} \leq x < \infty\end{cases}\]is continuous for 0 ≤ x < ∞, then the most suitable values of a and b are

 


If  \[f\left( x \right) = \frac{1 - \sin x}{\left( \pi - 2x \right)^2},\] when x ≠ π/2 and f (π/2) = λ, then f (x) will be continuous function at x= π/2, where λ =


If the function  \[f\left( x \right) = \frac{2x - \sin^{- 1} x}{2x + \tan^{- 1} x}\] is continuous at each point of its domain, then the value of f (0) is 


The value of a for which the function \[f\left( x \right) = \begin{cases}5x - 4 , & \text{ if } 0 < x \leq 1 \\ 4 x^2 + 3ax, & \text{ if } 1 < x < 2\end{cases}\] is continuous at every point of its domain, is 


If  \[f \left( x \right) = \sqrt{x^2 + 9}\] , write the value of

\[\lim_{x \to 4} \frac{f\left( x \right) - f\left( 4 \right)}{x - 4} .\]

If \[f\left( x \right) = \begin{cases}\frac{\left| x + 2 \right|}{\tan^{- 1} \left( x + 2 \right)} & , x \neq - 2 \\ 2 & , x = - 2\end{cases}\]  then f (x) is


Let f (x) = |cos x|. Then,


Let f (x) = a + b |x| + c |x|4, where a, b, and c are real constants. Then, f (x) is differentiable at x = 0, if


If f(x) = 2x and g(x) = `x^2/2 + 1`, then which of the following can be a discontinuous function ______.


The function f(x) = `(4 - x^2)/(4x - x^3)` is ______.


`lim_("x"-> pi) (1 + "cos"^2 "x")/("x" - pi)^2` is equal to ____________.


A real value of x satisfies `((3 - 4ix)/(3 + 4ix))` = α – iβ (α, β ∈ R), if α2 + β2 is equal to


The function f(x) = 5x – 3 is continuous at x =


What is the values of' 'k' so that the function 'f' is continuous at the indicated point


For what value of `k` the following function is continuous at the indicated point

`f(x) = {{:(kx^2",", if x ≤ 2),(3",", if x > 2):}` at x = 2


For what value of `k` the following function is continuous at the indicated point

`f(x) = {{:(kx + 1",", if x ≤ pi),(cos x",", if x > pi):}` at = `pi`


Share
Notifications

Englishहिंदीमराठी


      Forgot password?
Use app×