हिंदी

If F ( X ) = ⎧ ⎨ ⎩ 1 − Sin X ( π − 2 X ) 2 . Log Sin X Log ( 1 + π 2 − 4 π X + 4 X 2 ) , X ≠ π 2 K , X = π 2 is Continuous at X = π/2, Then K = - Mathematics

Advertisements
Advertisements

प्रश्न

If \[f\left( x \right) = \begin{cases}\frac{1 - \sin x}{\left( \pi - 2x \right)^2} . \frac{\log \sin x}{\log\left( 1 + \pi^2 - 4\pi x + 4 x^2 \right)}, & x \neq \frac{\pi}{2} \\ k , & x = \frac{\pi}{2}\end{cases}\]is continuous at x = π/2, then k =

 

विकल्प

  • \[- \frac{1}{16}\] 

  • \[- \frac{1}{32}\] 

  • \[- \frac{1}{64}\] 

  • \[- \frac{1}{28}\]

MCQ

उत्तर

\[\frac{- 1}{64}\]

If \[f\left( x \right)\]  is continuous at  \[x = \frac{\pi}{2}\] ,then 

\[\lim_{x \to \frac{\pi}{2}} f\left( x \right) = f\left( \frac{\pi}{2} \right)\]

\[\text{ If }\frac{\pi}{2} - x = t, \text{ then} \]

\[ \Rightarrow \lim_{t \to 0} f\left( \frac{\pi}{2} - t \right) = f\left( \frac{\pi}{2} \right)\]

\[ \Rightarrow \lim_{t \to 0} \left( \frac{1 - \sin \left( \frac{\pi}{2} - t \right)}{4 t^2} \times \frac{\log \sin \left( \frac{\pi}{2} - t \right)}{\log\left( 1 + \pi^2 - 4\pi\left( \frac{\pi}{2} - t \right) + 4 \left( \frac{\pi}{2} - t \right)^2 \right)} \right) = k\]

\[ \Rightarrow \lim_{t \to 0} \left( \frac{\left( 1 - \cos t \right)}{4 t^2} \times \frac{\log \cos t}{\log\left( 1 + \pi^2 - 2 \pi^2 + 4\pi t + 4\left( \frac{\pi^2}{4} + t^2 - \pi t \right) \right)} \right) = k\]

\[ \Rightarrow \lim_{t \to 0} \left( \frac{\left( 1 - \cos t \right)}{4 t^2} \times \frac{\log \cos t}{\log\left( 1 - \pi^2 + 4\pi t + \left( \pi^2 + 4 t^2 - 4\pi t \right) \right)} \right) = k\]

\[ \Rightarrow \lim_{t \to 0} \left( \frac{\left( 1 - \cos t \right)}{4 t^2} \times \frac{\log \cos t}{\log \left( 1 + 4 t^2 \right)} \right) = k\]

\[ \Rightarrow \lim_{t \to 0} \left( \frac{2 \sin^2 \frac{t}{2}}{16 \times \frac{t^2}{4}} \times \frac{\log \cos t}{\log \left( 1 + 4 t^2 \right)} \right) = k\]

\[ \Rightarrow \frac{2}{16} \lim_{t \to 0} \left( \frac{\sin^2 \frac{t}{2}}{\left( \frac{t^2}{4} \right)} \times \frac{\log \cos t}{\left( \frac{4 t^2 \log \left( 1 + 4 t^2 \right)}{4 t^2} \right)} \right) = k\]

\[\]

\[ \Rightarrow \frac{1}{8} \lim_{t \to 0} \left( \frac{\sin^2 \frac{t}{2}}{\left( \frac{t}{2} \right)^2} \times \frac{\left( \frac{\log \cos t}{4 t^2} \right)}{\left( \frac{\log \left( 1 + 4 t^2 \right)}{4 t^2} \right)} \right) = k\]

\[ \Rightarrow \frac{1}{8} \lim_{t \to 0} \left( \frac{\sin^2 \frac{t}{2}}{\left( \frac{t}{2} \right)^2} \times \frac{\left( \frac{\log \sqrt{1 - \sin^2 t}}{4 t^2} \right)}{\left( \frac{\log\left( 1 + 4 t^2 \right)}{4 t^2} \right)} \right) = k\]

\[ \Rightarrow \frac{1}{8} \lim_{t \to 0} \left( \frac{\sin^2 \frac{t}{2}}{\left( \frac{t}{2} \right)^2} \times \frac{\left( \frac{\log\left( 1 - \sin^2 t \right)}{\left( 8 t^2 \right)} \right)}{\left( \frac{\log\left( 1 + 4 t^2 \right)}{4 t^2} \right)} \right) = k\]

\[ \Rightarrow \frac{1}{64} \lim_{t \to 0} \left( \frac{\sin^2 \frac{t}{2}}{\left( \frac{t}{2} \right)^2} \times \frac{\left( \frac{\log\left( 1 - \sin^2 t \right)}{t^2} \right)}{\left( \frac{\log\left( 1 + 4 t^2 \right)}{4 t^2} \right)} \right) = k\]

\[ \Rightarrow \frac{1}{64}\left( \lim_{t \to 0} \left( \frac{\sin\frac{t}{2}}{\left( \frac{t}{2} \right)} \right)^2 \times \frac{\lim_{t \to 0} \left( \frac{\log\left( 1 - \sin^2 t \right)}{t^2} \right)}{\lim_{t \to 0} \left( \frac{\log\left( 1 + 4 t^2 \right)}{4 t^2} \right)} \right) = k\]

\[ \Rightarrow \frac{1}{64}\left( 1 \times \lim_{t \to 0} \frac{\left( - \sin^2 t \right) \log \left( 1 - \sin^2 t \right)}{t^2 \left( - \sin^2 t \right)} \right) = k\]

\[ \Rightarrow \frac{- 1}{64}\left( \lim_{t \to 0} \frac{\left( \sin^2 t \right) \log \left( 1 - \sin^2 t \right)}{t^2 \left( - \sin^2 t \right)} \right) = k\]

\[ \Rightarrow \frac{- 1}{64}\left( \lim_{t \to 0} \left( \frac{\sin t}{t} \right)^2 \lim_{t \to 0} \frac{\log \left( 1 - \sin^2 t \right)}{\left( - \sin^2 t \right)} \right) = k\]

\[\]

\[ \Rightarrow \frac{- 1}{64}\left( \lim_{t \to 0} \left( \frac{\sin t}{t} \right)^2 \lim_{t \to 0} \frac{\log\left( 1 - \sin^2 t \right)}{\left( - \sin^2 t \right)} \right) = k\]

\[ \Rightarrow k = \frac{- 1}{64} \left[ \because \lim_{x \to 0} \frac{\log\left( 1 - x \right)}{x} = 1 \right]\]

shaalaa.com
  क्या इस प्रश्न या उत्तर में कोई त्रुटि है?
अध्याय 9: Continuity - Exercise 9.4 [पृष्ठ ४३]

APPEARS IN

आरडी शर्मा Mathematics [English] Class 12
अध्याय 9 Continuity
Exercise 9.4 | Q 6 | पृष्ठ ४३

वीडियो ट्यूटोरियलVIEW ALL [3]

संबंधित प्रश्न

If f (x) is continuous on [–4, 2] defined as 

f (x) = 6b – 3ax, for -4 ≤ x < –2
       = 4x + 1,    for –2 ≤ x ≤ 2

Show that a + b =`-7/6`


For what value of `lambda` is the function defined by `f(x) = {(lambda(x^2 - 2x),  "," if x <= 0),(4x+ 1, "," if x > 0):}`  continuous at x = 0? What about continuity at x = 1?


Discuss the continuity of the following function:

f (x) = sin x × cos x


Find the values of k so that the function f is continuous at the indicated point.

`f(x) = {(kx + 1, "," if x <= 5),(3x - 5, "," if x > 5):} " at x " = 5`


Find the values of a and b such that the function defined by `f(x) = {(5, "," if x <= 2),(ax +b, "," if 2 < x < 10),(21, "," if x >= 10):}`  is a continuous function.


Show that the function defined by f (x) = cos (x2) is a continuous function.


Examine the continuity of the function  

\[f\left( x \right) = \left\{ \begin{array}{l}3x - 2, & x \leq 0 \\ x + 1 , & x > 0\end{array}at x = 0 \right.\]

Also sketch the graph of this function.


Let  \[f\left( x \right) = \frac{\log\left( 1 + \frac{x}{a} \right) - \log\left( 1 - \frac{x}{b} \right)}{x}\] x ≠ 0. Find the value of f at x = 0 so that f becomes continuous at x = 0.

 


Extend the definition of the following by continuity 

\[f\left( x \right) = \frac{1 - \cos7 (x - \pi)}{5 (x - \pi )^2}\]  at the point x = π.

If \[f\left( x \right) = \begin{cases}\frac{x^2}{2}, & \text{ if } 0 \leq x \leq 1 \\ 2 x^2 - 3x + \frac{3}{2}, & \text P{ \text{ if }  }  1 < x \leq 2\end{cases}\]. Show that f is continuous at x = 1.

 

Find the points of discontinuity, if any, of the following functions: \[f\left( x \right) = \begin{cases}\frac{x^4 - 16}{x - 2}, & \text{ if } x \neq 2 \\ 16 , & \text{ if }  x = 2\end{cases}\]


The function f(x) is defined as follows: 

\[f\left( x \right) = \begin{cases}x^2 + ax + b , & 0 \leq x < 2 \\ 3x + 2 , & 2 \leq x \leq 4 \\ 2ax + 5b , & 4 < x \leq 8\end{cases}\]

If f is continuous on [0, 8], find the values of a and b.


Show that the function g (x) = x − [x] is discontinuous at all integral points. Here [x] denotes the greatest integer function.


If the function   \[f\left( x \right) = \frac{\sin 10x}{x}, x \neq 0\] is continuous at x = 0, find f (0).

 


If  \[f\left( x \right) = \binom{\frac{1 - \cos x}{x^2}, x \neq 0}{k, x = 0}\]  is continuous at x = 0, find k


If f (x) = (x + 1)cot x be continuous at x = 0, then f (0) is equal to 


The function 

\[f\left( x \right) = \begin{cases}x^2 /a , & 0 \leq x < 1 \\ a , & 1 \leq x < \sqrt{2} \\ \frac{2 b^2 - 4b}{x^2}, & \sqrt{2} \leq x < \infty\end{cases}\]is continuous for 0 ≤ x < ∞, then the most suitable values of a and b are

 


The function 

\[f\left( x \right) = \begin{cases}\frac{\sin 3x}{x}, & x \neq 0 \\ \frac{k}{2} , & x = 0\end{cases}\]  is continuous at x = 0, then k =

If the function  \[f\left( x \right) = \frac{2x - \sin^{- 1} x}{2x + \tan^{- 1} x}\] is continuous at each point of its domain, then the value of f (0) is 


If the function f (x) defined by  \[f\left( x \right) = \begin{cases}\frac{\log \left( 1 + 3x \right) - \log \left( 1 - 2x \right)}{x}, & x \neq 0 \\ k , & x = 0\end{cases}\] is continuous at x = 0, then k =

 


Find the values of a and b so that the function

\[f\left( x \right)\begin{cases}x^2 + 3x + a, & \text { if } x \leq 1 \\ bx + 2 , &\text {  if } x > 1\end{cases}\] is differentiable at each x ∈ R.

Find the values of a and b, if the function f defined by 

\[f\left( x \right) = \begin{cases}x^2 + 3x + a & , & x \leqslant 1 \\ bx + 2 & , & x > 1\end{cases}\] is differentiable at = 1.

If is defined by  \[f\left( x \right) = x^2 - 4x + 7\] , show that \[f'\left( 5 \right) = 2f'\left( \frac{7}{2} \right)\] 


The function f (x) = |cos x| is


If \[f\left( x \right) = a\left| \sin x \right| + b e^\left| x \right| + c \left| x \right|^3\] 


The function f (x) = 1 + |cos x| is


The function \[f\left( x \right) = \frac{\sin \left( \pi\left[ x - \pi \right] \right)}{4 + \left[ x \right]^2}\] , where [⋅] denotes the greatest integer function, is


Let f (x) = a + b |x| + c |x|4, where a, b, and c are real constants. Then, f (x) is differentiable at x = 0, if


The function f(x) = `(4 - x^2)/(4x - x^3)` is ______.


If f.g is continuous at x = a, then f and g are separately continuous at x = a.


Let `"f" ("x") = ("In" (1 + "ax") - "In" (1 - "bx"))/"x", "x" ne 0` If f (x) is continuous at x = 0, then f(0) = ____________.


The point(s), at which the function f given by f(x) = `{("x"/|"x"|","  "x" < 0),(-1","  "x" ≥ 0):}` is continuous, is/are:


Let f(x) = `{{:(5^(1/x), x < 0),(lambda[x], x ≥ 0):}` and λ ∈ R, then at x = 0


What is the values of' 'k' so that the function 'f' is continuous at the indicated point


For what value of `k` the following function is continuous at the indicated point

`f(x) = {{:(kx^2",", if x ≤ 2),(3",", if x > 2):}` at x = 2


For what value of `k` the following function is continuous at the indicated point

`f(x) = {{:(kx + 1",", if x ≤ pi),(cos x",", if x > pi):}` at = `pi`


Find the values of `a` and ` b` such that the function by:

`f(x) = {{:(5",", if  x ≤ 2),(ax + b",", if 2 < x < 10),(21",", if x ≥ 10):}`

is a continuous function.


Share
Notifications

Englishहिंदीमराठी


      Forgot password?
Use app×