हिंदी

If F ( X ) = a | Sin X | + B E | X | + C | X | 3 (A) a = B = C = 0 (B) a = 0 , B = 0 ; C ∈ R (C) B = C = 0 , a ∈ R (D) C = 0 , a = 0 , B ∈ R - Mathematics

Advertisements
Advertisements

प्रश्न

If \[f\left( x \right) = a\left| \sin x \right| + b e^\left| x \right| + c \left| x \right|^3\] 

विकल्प

  • \[a = b = c = 0\]

  • \[a = 0, b = 0; c \in R\]

     

  • \[b = c = 0, a \in R\]

  • \[c = 0, a = 0, b \in R\]

     

MCQ

उत्तर

(b) \[a = 0, b = 0; c \in R\]

\[\text{ We have }, \]
\[f\left( x \right) = a \left| \sin x \right| + b e^\left| x \right| + c \left| x \right|^3 \]
`= {(a sin x+be^x +cx^3 , 0<x<pi/2),(-a sin x +be^(-x) -cx^3 , -pi/2 <x <0):}`
\[\text{Here,} f\left( x \right)\text { is differentiable at x} = 0\]
\[\text{Therefore}, \left(\text {  LHD at x } = 0 \right) = \left( \text { RHD at x } = 0 \right)\]
\[ \Rightarrow \lim_{x \to 0^-} \frac{f\left( x \right) - f\left( 0 \right)}{x - 0} = \lim_{x \to 0^+} \frac{f\left( x \right) - f\left( 0 \right)}{x - 0}\]
\[ \Rightarrow \lim_{x \to 0^-} \frac{- a \ sinx + b e^{- x} - c x^3 - b}{x} = \lim_{x \to 0^+} \frac{a \sin x + b e^x + c x^3 - b}{x}\]
\[ \Rightarrow \lim_{h \to 0} \frac{- a \sin\left( 0 - h \right) + b e^{- \left( 0 - h \right)} - c \left( 0 - h \right)^3 - b}{0 - h} = \lim_{h \to 0} \frac{a \sin \left( 0 + h \right) + b e^\left( 0 + h \right) + c \left( 0 + h \right)^3 - b}{0 + h}\]
\[ \Rightarrow \lim_{h \to 0} \frac{a \sin h + be {}^h + c h^3 - b}{- h} = \lim_{h \to 0} \frac{a \sin h + b e^h + c h^3 - b}{h}\]
\[ \Rightarrow \lim_{h \to 0} \frac{a \cos h + b e^h + 3c h^2}{- 1} = \lim_{h \to 0} \frac{a \cos h + b e^h + 3c h^2}{1} \left( By L'Hospital rule \right)\]
\[ \Rightarrow - \left( a + b \right) = a + b\]
\[ \Rightarrow - 2\left( a + b \right) = 0\]
\[ \Rightarrow a + b = 0\]
\[\text{This is true for all value of c}\]
\[ \text{therefore c} \in R\]
\[\text{In the given options, option} \left( b \right) \text { satisfies a + b = 0 and c} \in R\]

shaalaa.com
  क्या इस प्रश्न या उत्तर में कोई त्रुटि है?
अध्याय 10: Differentiability - Exercise 10.4 [पृष्ठ १८]

APPEARS IN

आरडी शर्मा Mathematics [English] Class 12
अध्याय 10 Differentiability
Exercise 10.4 | Q 9 | पृष्ठ १८

वीडियो ट्यूटोरियलVIEW ALL [3]

संबंधित प्रश्न

Discuss the continuity of the cosine, cosecant, secant and cotangent functions,


Find the values of k so that the function f is continuous at the indicated point.

`f(x) = {(kx^2, "," if x<= 2),(3, "," if x > 2):} " at x" = 2`


Find the values of a and b such that the function defined by `f(x) = {(5, "," if x <= 2),(ax +b, "," if 2 < x < 10),(21, "," if x >= 10):}`  is a continuous function.


Show that the function defined by f (x) = cos (x2) is a continuous function.


Examine sin |x| is a continuous function.


Let  \[f\left( x \right) = \frac{\log\left( 1 + \frac{x}{a} \right) - \log\left( 1 - \frac{x}{b} \right)}{x}\] x ≠ 0. Find the value of f at x = 0 so that f becomes continuous at x = 0.

 


If  \[f\left( x \right) = \frac{2x + 3\ \text{ sin }x}{3x + 2\ \text{ sin }  x}, x \neq 0\] If f(x) is continuous at x = 0, then find f (0).


If \[f\left( x \right) = \begin{cases}\frac{x^2}{2}, & \text{ if } 0 \leq x \leq 1 \\ 2 x^2 - 3x + \frac{3}{2}, & \text P{ \text{ if }  }  1 < x \leq 2\end{cases}\]. Show that f is continuous at x = 1.

 

Prove that the function \[f\left( x \right) = \begin{cases}\frac{\sin x}{x}, & x < 0 \\ x + 1, & x \geq 0\end{cases}\]  is everywhere continuous.

 


Discuss the continuity of the function  

\[f\left( x \right) = \left\{ \begin{array}{l}\frac{x}{\left| x \right|}, & x \neq 0 \\ 0 , & x = 0\end{array} . \right.\]

Find the points of discontinuity, if any, of the following functions: 

\[f\left( x \right) = \begin{cases}x^3 - x^2 + 2x - 2, & \text{ if }x \neq 1 \\ 4 , & \text{ if } x = 1\end{cases}\]

 


Find the points of discontinuity, if any, of the following functions:  \[f\left( x \right) = \begin{cases}\frac{\sin x}{x}, & \text{ if }  x < 0 \\ 2x + 3, & x \geq 0\end{cases}\]


In the following, determine the value of constant involved in the definition so that the given function is continuou:  \[f\left( x \right) = \begin{cases}\frac{\sin 2x}{5x}, & \text{ if }  x \neq 0 \\ 3k , & \text{ if  } x = 0\end{cases}\] 


The function f(x) is defined as follows: 

\[f\left( x \right) = \begin{cases}x^2 + ax + b , & 0 \leq x < 2 \\ 3x + 2 , & 2 \leq x \leq 4 \\ 2ax + 5b , & 4 < x \leq 8\end{cases}\]

If f is continuous on [0, 8], find the values of a and b.


Show that f (x) = | cos x | is a continuous function.

 

If \[f\left( x \right) = \begin{cases}\frac{x}{\sin 3x}, & x \neq 0 \\ k , & x = 0\end{cases}\]  is continuous at x = 0, then write the value of k.


If the function   \[f\left( x \right) = \frac{\sin 10x}{x}, x \neq 0\] is continuous at x = 0, find f (0).

 


If \[f\left( x \right) = \begin{cases}\frac{\sin^{- 1} x}{x}, & x \neq 0 \\ k , & x = 0\end{cases}\]is continuous at x = 0, write the value of k.


The function 

\[f\left( x \right) = \begin{cases}\frac{\sin 3x}{x}, & x \neq 0 \\ \frac{k}{2} , & x = 0\end{cases}\]  is continuous at x = 0, then k =

If \[f\left( x \right) = \begin{cases}\frac{1 - \cos 10x}{x^2} , & x < 0 \\ a , & x = 0 \\ \frac{\sqrt{x}}{\sqrt{625 + \sqrt{x}} - 25}, & x > 0\end{cases}\] then the value of a so that f (x) may be continuous at x = 0, is 


The value of a for which the function \[f\left( x \right) = \begin{cases}5x - 4 , & \text{ if } 0 < x \leq 1 \\ 4 x^2 + 3ax, & \text{ if } 1 < x < 2\end{cases}\] is continuous at every point of its domain, is 


Find the values of a and b so that the function

\[f\left( x \right)\begin{cases}x^2 + 3x + a, & \text { if } x \leq 1 \\ bx + 2 , &\text {  if } x > 1\end{cases}\] is differentiable at each x ∈ R.

If is defined by  \[f\left( x \right) = x^2 - 4x + 7\] , show that \[f'\left( 5 \right) = 2f'\left( \frac{7}{2} \right)\] 


The function \[f\left( x \right) = \frac{\sin \left( \pi\left[ x - \pi \right] \right)}{4 + \left[ x \right]^2}\] , where [⋅] denotes the greatest integer function, is


Let f(x) = |sin x|. Then ______.


`lim_("x" -> 0) ("x cos x" - "log" (1 + "x"))/"x"^2` is equal to ____________.


`lim_("x" -> 0) (1 - "cos x")/"x sin x"` is equal to ____________.


The point(s), at which the function f given by f(x) = `{("x"/|"x"|","  "x" < 0),(-1","  "x" ≥ 0):}` is continuous, is/are:


If `f`: R → {0, 1} is a continuous surjection map then `f^(-1) (0) ∩ f^(-1) (1)` is:


If `f(x) = {{:(-x^2",", "when"  x ≤ 0),(5x - 4",", "when"  0 < x ≤ 1),(4x^2 - 3x",", "when"  1 < x < 2),(3x + 4",", "when"  x ≥ 2):}`, then


For what value of `k` the following function is continuous at the indicated point

`f(x) = {{:(kx + 1",", if x ≤ pi),(cos x",", if x > pi):}` at = `pi`


Find the values of `a` and ` b` such that the function by:

`f(x) = {{:(5",", if  x ≤ 2),(ax + b",", if 2 < x < 10),(21",", if x ≥ 10):}`

is a continuous function.


Discuss the continuity of the following function:

f(x) = sin x + cos x


Share
Notifications

Englishहिंदीमराठी


      Forgot password?
Use app×