Advertisements
Advertisements
प्रश्न
If \[f\left( x \right) = a\left| \sin x \right| + b e^\left| x \right| + c \left| x \right|^3\]
विकल्प
\[a = b = c = 0\]
\[a = 0, b = 0; c \in R\]
\[b = c = 0, a \in R\]
\[c = 0, a = 0, b \in R\]
उत्तर
(b) \[a = 0, b = 0; c \in R\]
\[\text{ We have }, \]
\[f\left( x \right) = a \left| \sin x \right| + b e^\left| x \right| + c \left| x \right|^3 \]
`= {(a sin x+be^x +cx^3 , 0<x<pi/2),(-a sin x +be^(-x) -cx^3 , -pi/2 <x <0):}`
\[\text{Here,} f\left( x \right)\text { is differentiable at x} = 0\]
\[\text{Therefore}, \left(\text { LHD at x } = 0 \right) = \left( \text { RHD at x } = 0 \right)\]
\[ \Rightarrow \lim_{x \to 0^-} \frac{f\left( x \right) - f\left( 0 \right)}{x - 0} = \lim_{x \to 0^+} \frac{f\left( x \right) - f\left( 0 \right)}{x - 0}\]
\[ \Rightarrow \lim_{x \to 0^-} \frac{- a \ sinx + b e^{- x} - c x^3 - b}{x} = \lim_{x \to 0^+} \frac{a \sin x + b e^x + c x^3 - b}{x}\]
\[ \Rightarrow \lim_{h \to 0} \frac{- a \sin\left( 0 - h \right) + b e^{- \left( 0 - h \right)} - c \left( 0 - h \right)^3 - b}{0 - h} = \lim_{h \to 0} \frac{a \sin \left( 0 + h \right) + b e^\left( 0 + h \right) + c \left( 0 + h \right)^3 - b}{0 + h}\]
\[ \Rightarrow \lim_{h \to 0} \frac{a \sin h + be {}^h + c h^3 - b}{- h} = \lim_{h \to 0} \frac{a \sin h + b e^h + c h^3 - b}{h}\]
\[ \Rightarrow \lim_{h \to 0} \frac{a \cos h + b e^h + 3c h^2}{- 1} = \lim_{h \to 0} \frac{a \cos h + b e^h + 3c h^2}{1} \left( By L'Hospital rule \right)\]
\[ \Rightarrow - \left( a + b \right) = a + b\]
\[ \Rightarrow - 2\left( a + b \right) = 0\]
\[ \Rightarrow a + b = 0\]
\[\text{This is true for all value of c}\]
\[ \text{therefore c} \in R\]
\[\text{In the given options, option} \left( b \right) \text { satisfies a + b = 0 and c} \in R\]
APPEARS IN
संबंधित प्रश्न
Discuss the continuity of the cosine, cosecant, secant and cotangent functions,
Find the values of k so that the function f is continuous at the indicated point.
`f(x) = {(kx^2, "," if x<= 2),(3, "," if x > 2):} " at x" = 2`
Find the values of a and b such that the function defined by `f(x) = {(5, "," if x <= 2),(ax +b, "," if 2 < x < 10),(21, "," if x >= 10):}` is a continuous function.
Show that the function defined by f (x) = cos (x2) is a continuous function.
Examine sin |x| is a continuous function.
Let \[f\left( x \right) = \frac{\log\left( 1 + \frac{x}{a} \right) - \log\left( 1 - \frac{x}{b} \right)}{x}\] x ≠ 0. Find the value of f at x = 0 so that f becomes continuous at x = 0.
If \[f\left( x \right) = \frac{2x + 3\ \text{ sin }x}{3x + 2\ \text{ sin } x}, x \neq 0\] If f(x) is continuous at x = 0, then find f (0).
If \[f\left( x \right) = \begin{cases}\frac{x^2}{2}, & \text{ if } 0 \leq x \leq 1 \\ 2 x^2 - 3x + \frac{3}{2}, & \text P{ \text{ if } } 1 < x \leq 2\end{cases}\]. Show that f is continuous at x = 1.
Prove that the function \[f\left( x \right) = \begin{cases}\frac{\sin x}{x}, & x < 0 \\ x + 1, & x \geq 0\end{cases}\] is everywhere continuous.
Discuss the continuity of the function
Find the points of discontinuity, if any, of the following functions:
Find the points of discontinuity, if any, of the following functions: \[f\left( x \right) = \begin{cases}\frac{\sin x}{x}, & \text{ if } x < 0 \\ 2x + 3, & x \geq 0\end{cases}\]
In the following, determine the value of constant involved in the definition so that the given function is continuou: \[f\left( x \right) = \begin{cases}\frac{\sin 2x}{5x}, & \text{ if } x \neq 0 \\ 3k , & \text{ if } x = 0\end{cases}\]
The function f(x) is defined as follows:
If f is continuous on [0, 8], find the values of a and b.
Show that f (x) = | cos x | is a continuous function.
If \[f\left( x \right) = \begin{cases}\frac{x}{\sin 3x}, & x \neq 0 \\ k , & x = 0\end{cases}\] is continuous at x = 0, then write the value of k.
If the function \[f\left( x \right) = \frac{\sin 10x}{x}, x \neq 0\] is continuous at x = 0, find f (0).
If \[f\left( x \right) = \begin{cases}\frac{\sin^{- 1} x}{x}, & x \neq 0 \\ k , & x = 0\end{cases}\]is continuous at x = 0, write the value of k.
The function
If \[f\left( x \right) = \begin{cases}\frac{1 - \cos 10x}{x^2} , & x < 0 \\ a , & x = 0 \\ \frac{\sqrt{x}}{\sqrt{625 + \sqrt{x}} - 25}, & x > 0\end{cases}\] then the value of a so that f (x) may be continuous at x = 0, is
The value of a for which the function \[f\left( x \right) = \begin{cases}5x - 4 , & \text{ if } 0 < x \leq 1 \\ 4 x^2 + 3ax, & \text{ if } 1 < x < 2\end{cases}\] is continuous at every point of its domain, is
Find the values of a and b so that the function
If f is defined by \[f\left( x \right) = x^2 - 4x + 7\] , show that \[f'\left( 5 \right) = 2f'\left( \frac{7}{2} \right)\]
The function \[f\left( x \right) = \frac{\sin \left( \pi\left[ x - \pi \right] \right)}{4 + \left[ x \right]^2}\] , where [⋅] denotes the greatest integer function, is
Let f(x) = |sin x|. Then ______.
`lim_("x" -> 0) ("x cos x" - "log" (1 + "x"))/"x"^2` is equal to ____________.
`lim_("x" -> 0) (1 - "cos x")/"x sin x"` is equal to ____________.
The point(s), at which the function f given by f(x) = `{("x"/|"x"|"," "x" < 0),(-1"," "x" ≥ 0):}` is continuous, is/are:
If `f`: R → {0, 1} is a continuous surjection map then `f^(-1) (0) ∩ f^(-1) (1)` is:
If `f(x) = {{:(-x^2",", "when" x ≤ 0),(5x - 4",", "when" 0 < x ≤ 1),(4x^2 - 3x",", "when" 1 < x < 2),(3x + 4",", "when" x ≥ 2):}`, then
For what value of `k` the following function is continuous at the indicated point
`f(x) = {{:(kx + 1",", if x ≤ pi),(cos x",", if x > pi):}` at = `pi`
Find the values of `a` and ` b` such that the function by:
`f(x) = {{:(5",", if x ≤ 2),(ax + b",", if 2 < x < 10),(21",", if x ≥ 10):}`
is a continuous function.
Discuss the continuity of the following function:
f(x) = sin x + cos x