हिंदी

If F ( X ) = { Sin − 1 X X , X ≠ 0 K , X = 0 is Continuous at X = 0, Write the Value of K. - Mathematics

Advertisements
Advertisements

प्रश्न

If \[f\left( x \right) = \begin{cases}\frac{\sin^{- 1} x}{x}, & x \neq 0 \\ k , & x = 0\end{cases}\]is continuous at x = 0, write the value of k.

योग

उत्तर

Given,  

\[f\left( x \right) = \begin{cases}\frac{\sin^{- 1} x}{x}, & x \neq 0 \\ k , & x = 0\end{cases}\]

If  \[f\left( x \right)\]  is continuous at  \[x = 0\] , then

\[\lim_{x \to 0} f\left( x \right) = f\left( 0 \right)\]

\[\Rightarrow \lim_{x \to 0} \left( \frac{\sin^{- 1} x}{x} \right) = f\left( 0 \right)\]

\[\Rightarrow \lim_{x \to 0} \left( \frac{\sin^{- 1} x}{x} \right) = k\]

\[ \Rightarrow k = 1 \left[ \because \lim_{x \to 0} \left( \frac{\sin^{- 1} x}{x} \right) = 1 \right]\]

shaalaa.com
  क्या इस प्रश्न या उत्तर में कोई त्रुटि है?
अध्याय 9: Continuity - Exercise 9.3 [पृष्ठ ४२]

APPEARS IN

आरडी शर्मा Mathematics [English] Class 12
अध्याय 9 Continuity
Exercise 9.3 | Q 9 | पृष्ठ ४२

वीडियो ट्यूटोरियलVIEW ALL [3]

संबंधित प्रश्न

If f (x) is continuous on [–4, 2] defined as 

f (x) = 6b – 3ax, for -4 ≤ x < –2
       = 4x + 1,    for –2 ≤ x ≤ 2

Show that a + b =`-7/6`


For what value of `lambda` is the function defined by `f(x) = {(lambda(x^2 - 2x),  "," if x <= 0),(4x+ 1, "," if x > 0):}`  continuous at x = 0? What about continuity at x = 1?


Discuss the continuity of the cosine, cosecant, secant and cotangent functions,


Show that the function defined by f(x) = |cos x| is a continuous function.


Find the values of a so that the function 

\[f\left( x \right) = \begin{cases}ax + 5, if & x \leq 2 \\ x - 1 , if & x > 2\end{cases}\text{is continuous at x} = 2 .\]

In each of the following, find the value of the constant k so that the given function is continuous at the indicated point; \[f\left( x \right) = \begin{cases}\frac{1 - \cos 2kx}{x^2}, \text{ if } & x \neq 0 \\ 8 , \text{ if }  & x = 0\end{cases}\] at x = 0


If \[f\left( x \right) = \begin{cases}\frac{x^2}{2}, & \text{ if } 0 \leq x \leq 1 \\ 2 x^2 - 3x + \frac{3}{2}, & \text P{ \text{ if }  }  1 < x \leq 2\end{cases}\]. Show that f is continuous at x = 1.

 

If  \[f\left( x \right) = \begin{cases}2 x^2 + k, &\text{ if }  x \geq 0 \\ - 2 x^2 + k, & \text{ if }  x < 0\end{cases}\]  then what should be the value of k so that f(x) is continuous at x = 0.

 


Prove that the function \[f\left( x \right) = \begin{cases}\frac{\sin x}{x}, & x < 0 \\ x + 1, & x \geq 0\end{cases}\]  is everywhere continuous.

 


In the following, determine the value of constant involved in the definition so that the given function is continuou: \[f\left( x \right) = \begin{cases}kx + 5, & \text{ if  }  x \leq 2 \\ x - 1, & \text{ if }  x > 2\end{cases}\]


The function  \[f\left( x \right) = \begin{cases}x^2 /a , & \text{ if } 0 \leq x < 1 \\ a , & \text{ if } 1 \leq x < \sqrt{2} \\ \frac{2 b^2 - 4b}{x^2}, & \text{ if }  \sqrt{2} \leq x < \infty\end{cases}\] is continuous on (0, ∞), then find the most suitable values of a and b.


If \[f\left( x \right) = \frac{\tan\left( \frac{\pi}{4} - x \right)}{\cot 2x}\]

for x ≠ π/4, find the value which can be assigned to f(x) at x = π/4 so that the function f(x) becomes continuous every where in [0, π/2].


Show that f (x) = cos x2 is a continuous function.


If \[f\left( x \right) = \begin{cases}\frac{x}{\sin 3x}, & x \neq 0 \\ k , & x = 0\end{cases}\]  is continuous at x = 0, then write the value of k.


If  \[f\left( x \right) = \binom{\frac{1 - \cos x}{x^2}, x \neq 0}{k, x = 0}\]  is continuous at x = 0, find k


Determine the value of the constant 'k' so that function 

\[\left( x \right) = \begin{cases}\frac{kx}{\left| x \right|}, &\text{ if }  x < 0 \\ 3 , & \text{ if } x \geq 0\end{cases}\]  is continuous at x  = 0  . 

Let  \[f\left( x \right) = \left\{ \begin{array}\\ \frac{x - 4}{\left| x - 4 \right|} + a, & x < 4 \\ a + b , & x = 4 \\ \frac{x - 4}{\left| x - 4 \right|} + b, & x > 4\end{array} . \right.\]Then, f (x) is continuous at x = 4 when

 

 


The function  \[f\left( x \right) = \begin{cases}1 , & \left| x \right| \geq 1 & \\ \frac{1}{n^2} , & \frac{1}{n} < \left| x \right| & < \frac{1}{n - 1}, n = 2, 3, . . . \\ 0 , & x = 0 &\end{cases}\] 


The value of f (0), so that the function

\[f\left( x \right) = \frac{\left( 27 - 2x \right)^{1/3} - 3}{9 - 3 \left( 243 + 5x \right)^{1/5}}\left( x \neq 0 \right)\] is continuous, is given by 


If the function  \[f\left( x \right) = \frac{2x - \sin^{- 1} x}{2x + \tan^{- 1} x}\] is continuous at each point of its domain, then the value of f (0) is 


Let  \[f\left( x \right) = \frac{\tan\left( \frac{\pi}{4} - x \right)}{\cot 2x}, x \neq \frac{\pi}{4} .\]  The value which should be assigned to f (x) at  \[x = \frac{\pi}{4},\]so that it is continuous everywhere is


Find the values of a and b, if the function f defined by 

\[f\left( x \right) = \begin{cases}x^2 + 3x + a & , & x \leqslant 1 \\ bx + 2 & , & x > 1\end{cases}\] is differentiable at = 1.

If is defined by  \[f\left( x \right) = x^2 - 4x + 7\] , show that \[f'\left( 5 \right) = 2f'\left( \frac{7}{2} \right)\] 


The function f (x) = |cos x| is


The function f (x) = 1 + |cos x| is


Let f (x) = a + b |x| + c |x|4, where a, b, and c are real constants. Then, f (x) is differentiable at x = 0, if


If \[f\left( x \right) = \begin{cases}\frac{1 - \cos x}{x \sin x}, & x \neq 0 \\ \frac{1}{2} , & x = 0\end{cases}\] 

then at x = 0, f (x) is


If f(x) = 2x and g(x) = `x^2/2 + 1`, then which of the following can be a discontinuous function ______.


If f.g is continuous at x = a, then f and g are separately continuous at x = a.


`lim_("x" -> 0) ("x cos x" - "log" (1 + "x"))/"x"^2` is equal to ____________.


A real value of x satisfies `((3 - 4ix)/(3 + 4ix))` = α – iβ (α, β ∈ R), if α2 + β2 is equal to


Let f(x) = `{{:(5^(1/x), x < 0),(lambda[x], x ≥ 0):}` and λ ∈ R, then at x = 0


The value of ‘k’ for which the function f(x) = `{{:((1 - cos4x)/(8x^2)",",  if x ≠ 0),(k",",  if x = 0):}` is continuous at x = 0 is ______.


The function f(x) = x |x| is ______.


Share
Notifications

Englishहिंदीमराठी


      Forgot password?
Use app×