Advertisements
Advertisements
प्रश्न
Let \[f\left( x \right) = \begin{cases}\frac{1}{\left| x \right|} & for \left| x \right| \geq 1 \\ a x^2 + b & for \left| x \right| < 1\end{cases}\] If f (x) is continuous and differentiable at any point, then
विकल्प
\[a = \frac{1}{2}, b = - \frac{3}{2}\]
\[a = - \frac{1}{2}, b = \frac{3}{2}\]
a = 1, b = − 1
none of these
उत्तर
(b) \[a = - \frac{1}{2}, b = \frac{3}{2}\]
We have,
`f(x) = {((-1)/x , xle-1),(ax^2 +b, -1 <x<1):}`
\[\text{Given:} f\left( x \right)\text { is differentiable and continuous at every point} . \]
\[\text{Consider a point x} = 1\]
\[ \lim_{x \to 1^-} f\left( x \right) = \lim_{x \to 1^+} f\left( x \right)\]
\[ \Rightarrow \lim_{x \to 1^-} \left( a x^2 + b \right) = \lim_{x \to 1^+} \frac{1}{x}\]
\[ \Rightarrow a + b = 1 . . . \left( i \right)\]
\[\text{It is also differentiable at x} = 1\]
\[ \lim_{x \to 1^-} \frac{f\left( x \right) - f\left( 1 \right)}{x - 1} = \lim_{x \to 1^+} \frac{f\left( x \right) - f\left( 1 \right)}{x - 1}\]
\[ \Rightarrow \lim_{x \to 1^-} \frac{a x^2 + b - 1}{x - 1} = \lim_{x \to 1^+} \frac{\frac{1}{x} - 1}{x - 1}\]
\[ \Rightarrow \lim_{x \to 1^-} \frac{a x^2 - a}{x - 1} = \lim_{x \to 1^+} \frac{1 - x}{\left( x - 1 \right)x} \left[ \text { Using } \left( i \right) \right]\]
\[ \Rightarrow \lim_{x \to 1^-} a\left( x + 1 \right) = \lim_{x \to 1^+} \left( - x \right)\]
\[ \Rightarrow 2a = - 1\]
\[ \Rightarrow a = \frac{- 1}{2}\]
\[\text{ Plugging }a = \frac{- 1}{2} \text { in } \left( i \right) \text{ we get }, \]
\[b = \frac{3}{2}\]
\[ \therefore a = \frac{- 1}{2}, b = \frac{3}{2}\]
APPEARS IN
संबंधित प्रश्न
Discuss the continuity of the following functions at the indicated point(s):
(i) \[f\left( x \right) = \begin{cases}\left| x \right| \cos\left( \frac{1}{x} \right), & x \neq 0 \\ 0 , & x = 0\end{cases}at x = 0\]
Discuss the continuity of the following functions at the indicated point(s):
Discuss the continuity of the following functions at the indicated point(s): (iv) \[f\left( x \right) = \left\{ \begin{array}{l}\frac{e^x - 1}{\log(1 + 2x)}, if & x \neq a \\ 7 , if & x = 0\end{array}at x = 0 \right.\]
If \[f\left( x \right) = \begin{cases}\frac{x - 4}{\left| x - 4 \right|} + a, \text{ if } & x < 4 \\ a + b , \text{ if } & x = 4 \\ \frac{x - 4}{\left| x - 4 \right|} + b, \text{ if } & x > 4\end{cases}\] is continuous at x = 4, find a, b.
In each of the following, find the value of the constant k so that the given function is continuous at the indicated point;
In each of the following, find the value of the constant k so that the given function is continuous at the indicated point; \[f\left( x \right) = \begin{cases}\frac{x^2 - 25}{x - 5}, & x \neq 5 \\ k , & x = 5\end{cases}\]at x = 5
Find the points of discontinuity, if any, of the following functions: \[f\left( x \right) = \begin{cases}\frac{\sin 3x}{x}, & \text{ if } x \neq 0 \\ 4 , & \text{ if } x = 0\end{cases}\]
In the following, determine the value of constant involved in the definition so that the given function is continuou: \[f\left( x \right) = \begin{cases}\frac{\sqrt{1 + px} - \sqrt{1 - px}}{x}, & \text{ if } - 1 \leq x < 0 \\ \frac{2x + 1}{x - 2} , & \text{ if } 0 \leq x \leq 1\end{cases}\]
If f (x) = | x − a | ϕ (x), where ϕ (x) is continuous function, then
The function \[f\left( x \right) = \begin{cases}\frac{e^{1/x} - 1}{e^{1/x} + 1}, & x \neq 0 \\ 0 , & x = 0\end{cases}\]
Let \[f\left( x \right) = \begin{cases}\frac{x^4 - 5 x^2 + 4}{\left| \left( x - 1 \right) \left( x - 2 \right) \right|}, & x \neq 1, 2 \\ 6 , & x = 1 \\ 12 , & x = 2\end{cases}\]. Then, f (x) is continuous on the set
Show that \[f\left( x \right) =\]`{(12x, -,13, if , x≤3),(2x^2, +,5, if x,>3):}` is differentiable at x = 3. Also, find f'(3).
Find whether the function is differentiable at x = 1 and x = 2
Write an example of a function which is everywhere continuous but fails to differentiable exactly at five points.
Discuss the continuity and differentiability of
If \[f\left( x \right) = \sqrt{1 - \sqrt{1 - x^2}},\text{ then } f \left( x \right)\text { is }\]
If \[f\left( x \right) = x^2 + \frac{x^2}{1 + x^2} + \frac{x^2}{\left( 1 + x^2 \right)} + . . . + \frac{x^2}{\left( 1 + x^2 \right)} + . . . . ,\]
then at x = 0, f (x)
If \[f\left( x \right) = \left| \log_e x \right|, \text { then}\]
Find k, if the function f is continuous at x = 0, where
`f(x)=[(e^x - 1)(sinx)]/x^2`, for x ≠ 0
= k , for x = 0
Find the points of discontinuity , if any for the function : f(x) = `(x^2 - 9)/(sinx - 9)`
If f(x) = `(e^(2x) - 1)/(ax)` . for x < 0 , a ≠ 0
= 1. for x = 0
= `(log(1 + 7x))/(bx)`. for x > 0 , b ≠ 0
is continuous at x = 0 . then find a and b
Discuss the continuity of function f at x = 0.
Where f(X) = `[ [sqrt ( 4 + x ) - 2 ]/ ( 3x )]`, For x ≠ 0
= `1/12`, For x = 0
The probability distribution function of continuous random variable X is given by
f( x ) = `x/4`, 0 < x < 2
= 0, Otherwise
Find P( x ≤ 1)
If the function f is continuous at x = I, then find f(1), where f(x) = `(x^2 - 3x + 2)/(x - 1),` for x ≠ 1
If f(x) = `(sqrt(2) cos x - 1)/(cot x - 1), x ≠ pi/4` find the value of `"f"(pi/4)` so that f (x) becomes continuous at x = `pi/4`
Show that the function f given by f(x) = `{{:(("e"^(1/x) - 1)/("e"^(1/x) + 1)",", "if" x ≠ 0),(0",", "if" x = 0):}` is discontinuous at x = 0.
For continuity, at x = a, each of `lim_(x -> "a"^+) "f"(x)` and `lim_(x -> "a"^-) "f"(x)` is equal to f(a).
f(x) = `{{:(("e"^(1/x))/(1 + "e"^(1/x))",", "if" x ≠ 0),(0",", "if" x = 0):}` at x = 0
Prove that the function f defined by
f(x) = `{{:(x/(|x| + 2x^2)",", x ≠ 0),("k", x = 0):}`
remains discontinuous at x = 0, regardless the choice of k.
Given the function f(x) = `1/(x + 2)`. Find the points of discontinuity of the composite function y = f(f(x))
If f(x) = `{{:("m"x + 1",", "if" x ≤ pi/2),(sin x + "n"",", "If" x > pi/2):}`, is continuous at x = `pi/2`, then ______.
An example of a function which is continuous everywhere but fails to be differentiable exactly at two points is ______.
The composition of two continuous function is a continuous function.
`lim_("x" -> "x" //4) ("cos x - sin x")/("x"- "x" /4)` is equal to ____________.
If the following function is continuous at x = 2 then the value of k will be ______.
f(x) = `{{:(2x + 1",", if x < 2),( k",", if x = 2),(3x - 1",", if x > 2):}`