Advertisements
Advertisements
प्रश्न
Discuss the continuity and differentiability of
उत्तर
Given:
Continuity:
(LHL at x = c)
\[\lim_{x \to c^-} f(x) \]
\[ = \lim_{h \to 0} f(c - h) \]
\[ = \lim_{h \to 0} (c - h - c) \cos\left( \frac{1}{c - h - c} \right)\]
\[ = \lim_{h \to 0} - h \cos\left( \frac{1}{h} \right) \]
\[\text { Since , cos } \left( \frac{1}{h} \right) \text{is a bounded function and 0 × times bounded function is} 0\]
(RHL at x = c)
\[\lim_{x \to c^+} f(x) \]
\[ = \lim_{h \to 0} f(c + h) \]
\[ = \lim_{h \to 0} (c + h - c) \cos\left( \frac{1}{c + h - c} \right)\]
\[ = \lim_{h \to 0} h \cos\left( \frac{1}{h} \right) \]
\[\text { Since} , \cos\left( \frac{1}{h} \right) \text{is a bounded function and 0 times bounded function is} 0\]
and
Differentiability at x = c
(LHD at x = c)
\[\lim_{x \to c^-} \frac{f(x) - f(c)}{x - c} \]
\[ = \lim_{h \to 0} \frac{f(c - h) - f(c)}{c - h - c} \]
\[ = \lim_{h \to 0} \frac{- h \cos\left( \frac{1}{- h} \right) - 0}{- h} \left[ \because 0 . \cos \left( \frac{1}{c - c} \right) = 0, as \cos\text { function is bounded function }. \right]\]
\[ = \lim_{h \to 0} \cos\left( \frac{1}{h} \right)\]
\[ = \text { A number which oscillates between - 1 and 1 }\]
\[ \therefore \text { LHD } \hspace{0.167em} (x = c) \text { does not exist } . \]
\[\text{Similarly , we can show that RHD(x = c) does not exist} . \]
\[\text{Hence , f(x) is not differentiable at x} = c\]
APPEARS IN
संबंधित प्रश्न
Examine the following function for continuity:
`f(x) = (x^2 - 25)/(x + 5), x != -5`
Examine the following function for continuity:
f(x) = | x – 5|
A function f(x) is defined as
Show that f(x) is continuous at x = 3
Let \[f\left( x \right) = \begin{cases}\frac{1 - \cos x}{x^2}, when & x \neq 0 \\ 1 , when & x = 0\end{cases}\] Show that f(x) is discontinuous at x = 0.
Discuss the continuity of the following functions at the indicated point(s):
Discuss the continuity of the following functions at the indicated point(s):
Discuss the continuity of the following functions at the indicated point(s):
Determine the value of the constant k so that the function
\[f\left( x \right) = \left\{ \begin{array}{l}\frac{x^2 - 3x + 2}{x - 1}, if & x \neq 1 \\ k , if & x = 1\end{array}\text{is continuous at x} = 1 \right.\]
For what value of k is the function
\[f\left( x \right) = \begin{cases}\frac{\sin 5x}{3x}, if & x \neq 0 \\ k , if & x = 0\end{cases}\text{is continuous at x} = 0?\]
Determine the value of the constant k so that the function
\[f\left( x \right) = \begin{cases}k x^2 , if & x \leq 2 \\ 3 , if & x > 2\end{cases}\text{is continuous at x} = 2 .\]
In each of the following, find the value of the constant k so that the given function is continuous at the indicated point;
In each of the following, find the value of the constant k so that the given function is continuous at the indicated point; \[f\left( x \right) = \begin{cases}k x^2 , & x \geq 1 \\ 4 , & x < 1\end{cases}\]at x = 1
Find the points of discontinuity, if any, of the following functions: \[f\left( x \right) = \begin{cases}\frac{\sin 3x}{x}, & \text{ if } x \neq 0 \\ 4 , & \text{ if } x = 0\end{cases}\]
Find f (0), so that \[f\left( x \right) = \frac{x}{1 - \sqrt{1 - x}}\] becomes continuous at x = 0.
If \[f\left( x \right) = \left| \log_{10} x \right|\] then at x = 1
If \[f\left( x \right) = \begin{cases}\frac{\sin (a + 1) x + \sin x}{x} , & x < 0 \\ c , & x = 0 \\ \frac{\sqrt{x + b x^2} - \sqrt{x}}{bx\sqrt{x}} , & x > 0\end{cases}\]is continuous at x = 0, then
If \[f\left( x \right) = \left\{ \begin{array}a x^2 + b , & 0 \leq x < 1 \\ 4 , & x = 1 \\ x + 3 , & 1 < x \leq 2\end{array}, \right.\] then the value of (a, b) for which f (x) cannot be continuous at x = 1, is
Show that \[f\left( x \right) =\]`{(12x, -,13, if , x≤3),(2x^2, +,5, if x,>3):}` is differentiable at x = 3. Also, find f'(3).
Show that the function
\[f\left( x \right) = \begin{cases}\left| 2x - 3 \right| \left[ x \right], & x \geq 1 \\ \sin \left( \frac{\pi x}{2} \right), & x < 1\end{cases}\] is continuous but not differentiable at x = 1.
Write an example of a function which is everywhere continuous but fails to differentiable exactly at five points.
Write the points where f (x) = |loge x| is not differentiable.
The function f (x) = sin−1 (cos x) is
Find k, if f(x) =`log (1+3x)/(5x)` for x ≠ 0
= k for x = 0
is continuous at x = 0.
Discuss continuity of f(x) =`(x^3-64)/(sqrt(x^2+9)-5)` For x ≠ 4
= 10 for x = 4 at x = 4
Find the value of k for which the function f (x ) = \[\binom{\frac{x^2 + 3x - 10}{x - 2}, x \neq 2}{ k , x^2 }\] is continuous at x = 2 .
Find k, if the function f is continuous at x = 0, where
`f(x)=[(e^x - 1)(sinx)]/x^2`, for x ≠ 0
= k , for x = 0
If the function f is continuous at x = 0
Where f(x) = 2`sqrt(x^3 + 1)` + a, for x < 0,
= `x^3 + a + b, for x > 0
and f (1) = 2, then find a and b.
If f(x) = `(e^(2x) - 1)/(ax)` . for x < 0 , a ≠ 0
= 1. for x = 0
= `(log(1 + 7x))/(bx)`. for x > 0 , b ≠ 0
is continuous at x = 0 . then find a and b
If f(x) = `{{:((x^3 + x^2 - 16x + 20)/(x - 2)^2",", x ≠ 2),("k"",", x = 2):}` is continuous at x = 2, find the value of k.
f(x) = |x| + |x − 1| at x = 1
f(x) = `{{:((2^(x + 2) - 16)/(4^x - 16)",", "if" x ≠ 2),("k"",", "if" x = 2):}` at x = 2
Prove that the function f defined by
f(x) = `{{:(x/(|x| + 2x^2)",", x ≠ 0),("k", x = 0):}`
remains discontinuous at x = 0, regardless the choice of k.
If f(x) = `x^2 sin 1/x` where x ≠ 0, then the value of the function f at x = 0, so that the function is continuous at x = 0, is ______.
The composition of two continuous function is a continuous function.
`lim_("x" -> "x" //4) ("cos x - sin x")/("x"- "x" /4)` is equal to ____________.