हिंदी

Find All the Points of Discontinuity Of F Defined By F (X) = | X |− | X + 1 |. - Mathematics

Advertisements
Advertisements

प्रश्न

Find all the points of discontinuity of f defined by f (x) = | x |− | x + 1 |.

योग

उत्तर

Given f (x) = | x |− | x + 1 |.

The two functions, g and h, are defined as

`g(x)=|x|` and `h(x)=|x+1|`

Then ,`f=g-h`

The continuity of g and is examined first.

`g(x)=|x|` can be written as 

`g(x)=[[-x, if   x < 0],[x, if  x ≥ 0]]`

Clearly, g is defined for all real numbers.

Let c be a real number.

Case I:

`" If c < 0 , then "   g(c)=-c  and  lim_(x->c)g(x)= lim_(x->c)=-c`

`∴ lim_(x->c)g(x)=g(c)`

So, g is continuous at all points < 0.

Case II:

`"If c < 0 , then "g(c)=-c lim_(x->c)g(x)=lim_(x->c)(-x)=-c`

`∴ lim_(x->c)g(x)=g(c)`

So, g is continuous at all points x > 0.

Case III:

`" if c =0 , then " g (c)=g(0)=0`

` lim_(x->0^-)g(x)= lim_(x->0^-)(- x)=0`

` lim_(x->0^+)g(x)= lim_(x->0^+)(x)=0`

` ∴ lim_(x->0^+)g(x)= lim_(x->0^+)(x)=g(0)`

So, g is continuous at x = 0

From the above three observations, it can be concluded that g is continuous at all points

`h(x)=|x+1|` can be written as 

`h(x)=[[-(x+1) if   x< -1],[x+1   if x ≥ -1]]`

Clearly, h is defined for every real number.

Let be a real number.

Case I:

`"if c < - 1, then h (c) = - (c +1) and " lim_(x->c) h (x) = lim_(x->c)[-(x+1)]=-(c + 1)`

` ∴ lim _(x-> c) h (x) = h(c) `

So, h is continuous at all points < −1.

Case II:

`"if c > - 1, then h (c) = c +1 and " lim_(x->c) h (x) = lim _(x->c)(x + 1)= c + 1`]

` ∴lim _(x->c) h (x) = h(c)`

So, h is continuous at all points x > −1.

Case III:

if c = -1, then h (c) = h (-1) = -1+1 = 0

`lim _(x->- 1^- ) h (x) = lim_(x->-1^-)[-(x+1)]=-(-1+1)=0`

`lim _(x->- 1^+ ) h (x) = lim_(x->-1^+)( x +1)=(-1+1) =0`

`∴lim _(x->- 1^- ) h (x) = lim_(h->-1^+)= h(-1)`

So, h is continuous at x = −1

From the above three observations, it can be concluded that h is continuous at all points of the real line.

So, g and h are continuous functions.

Thus, g − is also a continuous function.

Therefore, has no point of discontinuity.

shaalaa.com
  क्या इस प्रश्न या उत्तर में कोई त्रुटि है?
अध्याय 9: Continuity - Exercise 9.2 [पृष्ठ ३७]

APPEARS IN

आरडी शर्मा Mathematics [English] Class 12
अध्याय 9 Continuity
Exercise 9.2 | Q 16 | पृष्ठ ३७

वीडियो ट्यूटोरियलVIEW ALL [4]

संबंधित प्रश्न

Examine the following function for continuity:

f(x) = | x – 5|


Discuss the continuity of the function f, where f is defined by `f(x) = {(2x , ","if x < 0),(0, "," if 0 <= x <= 1),(4x, "," if x > 1):}`


Discuss the continuity of the function f, where f is defined by `f(x) = {(-2,"," if x <= -1),(2x, "," if -1 < x <= 1),(2, "," if x > 1):}`


If \[f\left( x \right) = \begin{cases}\frac{x^2 - 1}{x - 1}; for & x \neq 1 \\ 2 ; for & x = 1\end{cases}\] Find whether f(x) is continuous at x = 1.

 


Discuss the continuity of the following functions at the indicated point(s): 

\[f\left( x \right) = \binom{\left| x - a \right|\sin\left( \frac{1}{x - a} \right), for x \neq a}{0, for x = a}at x = a\] 

Determine the value of the constant k so that the function

\[f\left( x \right) = \begin{cases}k x^2 , if & x \leq 2 \\ 3 , if & x > 2\end{cases}\text{is continuous at x} = 2 .\]


If  \[f\left( x \right) = \begin{cases}\frac{1 - \cos kx}{x \sin x}, & x \neq 0 \\ \frac{1}{2} , & x = 0\end{cases}\text{is continuous at x} = 0, \text{ find } k .\]


If \[f\left( x \right) = \begin{cases}\frac{x - 4}{\left| x - 4 \right|} + a, \text{ if }  & x < 4 \\ a + b , \text{ if } & x = 4 \\ \frac{x - 4}{\left| x - 4 \right|} + b, \text{ if } & x > 4\end{cases}\]  is continuous at x = 4, find ab.

 


For what value of k is the following function continuous at x = 2? 

\[f\left( x \right) = \begin{cases}2x + 1 ; & \text{ if } x < 2 \\ k ; & x = 2 \\ 3x - 1 ; & x > 2\end{cases}\]

Find the points of discontinuity, if any, of the following functions:  \[f\left( x \right) = \begin{cases}\frac{\sin 3x}{x}, & \text{ if }   x \neq 0 \\ 4 , & \text{ if }  x = 0\end{cases}\]

 


Find the points of discontinuity, if any, of the following functions:  \[f\left( x \right) = \begin{cases}\left| x - 3 \right|, & \text{ if }  x \geq 1 \\ \frac{x^2}{4} - \frac{3x}{2} + \frac{13}{4}, & \text{ if }  x < 1\end{cases}\]


Discuss the continuity of the function  \[f\left( x \right) = \begin{cases}2x - 1 , & \text { if }  x < 2 \\ \frac{3x}{2} , & \text{ if  } x \geq 2\end{cases}\]


Define continuity of a function at a point.

 

Let f (x) = | x | + | x − 1|, then


Let  \[f\left( x \right) = \begin{cases}\frac{x^4 - 5 x^2 + 4}{\left| \left( x - 1 \right) \left( x - 2 \right) \right|}, & x \neq 1, 2 \\ 6 , & x = 1 \\ 12 , & x = 2\end{cases}\]. Then, f (x) is continuous on the set

 


The points of discontinuity of the function\[f\left( x \right) = \begin{cases}\frac{1}{5}\left( 2 x^2 + 3 \right) , & x \leq 1 \\ 6 - 5x , & 1 < x < 3 \\ x - 3 , & x \geq 3\end{cases}\text{ is } \left( are \right)\]  


Show that the function 

\[f\left( x \right) = \begin{cases}\left| 2x - 3 \right| \left[ x \right], & x \geq 1 \\ \sin \left( \frac{\pi x}{2} \right), & x < 1\end{cases}\] is continuous but not differentiable at x = 1.


If \[f\left( x \right) = \begin{cases}a x^2 - b, & \text { if }\left| x \right| < 1 \\ \frac{1}{\left| x \right|} , & \text { if }\left| x \right| \geq 1\end{cases}\]  is differentiable at x = 1, find a, b.


Write an example of a function which is everywhere continuous but fails to differentiable exactly at five points.


Discuss the continuity and differentiability of 

\[f\left( x \right) = \begin{cases}\left( x - c \right) \cos \left( \frac{1}{x - c} \right), & x \neq c \\ 0 , & x = c\end{cases}\]

Is every differentiable function continuous?


If f (x) is differentiable at x = c, then write the value of 

\[\lim_{x \to c} f \left( x \right)\]

Let \[f\left( x \right) = \left( x + \left| x \right| \right) \left| x \right|\]


Let f (x) = |x| and g (x) = |x3|, then


The set of points where the function f (x) = x |x| is differentiable is 

 


If \[f\left( x \right) = \left| \log_e x \right|, \text { then}\]


If f (x) = |3 − x| + (3 + x), where (x) denotes the least integer greater than or equal to x, then f (x) is


Find k, if f(x) =`log (1+3x)/(5x)` for x ≠ 0

                     = k                    for x = 0

is continuous at x = 0. 


Discuss the continuity of f at x = 1
Where f(X) = `[ 3 - sqrt ( 2x + 7 ) / ( x - 1 )]`           For x ≠ 1
                    = `-1/3`                                                 For x = 1


If f(x) = `(e^(2x) - 1)/(ax)` .                for x < 0 , a ≠ 0
         = 1.                             for x = 0
         = `(log(1 + 7x))/(bx)`.        for x > 0 , b ≠ 0
is continuous at x = 0 . then find a and b


Examine the continuity of the following function :
f(x) = x2 - x + 9,          for x ≤ 3
      = 4x + 3,               for x > 3 
at x = 3.


Discuss the continuity of the function `f(x) = (3 - sqrt(2x + 7))/(x - 1)` for x ≠ 1

= `-1/3`   for x = 1, at x = 1


If the function f is continuous at x = 2, then find 'k' where

f(x) = `(x^2 + 5)/(x - 1),` for  1< x ≤ 2 
      = kx + 1 , for x > 2


If the function
f(x) = x2 + ax + b,         x < 2

      = 3x + 2,                 2≤ x ≤ 4

      = 2ax + 5b,             4 < x

is continuous at x = 2 and x = 4, then find the values of a and b


If f(x) = `(sqrt(2) cos x - 1)/(cot x - 1), x ≠ pi/4` find the value of `"f"(pi/4)`  so that f (x) becomes continuous at x = `pi/4`


f(x) = `{{:(3x + 5",", "if"  x ≥ 2),(x^2",", "if"  x < 2):}` at x = 2


The value of k (k < 0) for which the function f defined as

f(x) = `{((1-cos"kx")/("x"sin"x")","  "x" ≠ 0),(1/2","  "x" = 0):}`

is continuous at x = 0 is:


Share
Notifications

Englishहिंदीमराठी


      Forgot password?
Use app×