Advertisements
Advertisements
प्रश्न
Find all the points of discontinuity of f defined by f (x) = | x |− | x + 1 |.
उत्तर
Given f (x) = | x |− | x + 1 |.
The two functions, g and h, are defined as
`g(x)=|x|` and `h(x)=|x+1|`
Then ,`f=g-h`
The continuity of g and h is examined first.
`g(x)=|x|` can be written as
`g(x)=[[-x, if x < 0],[x, if x ≥ 0]]`
Clearly, g is defined for all real numbers.
Let c be a real number.
Case I:
`" If c < 0 , then " g(c)=-c and lim_(x->c)g(x)= lim_(x->c)=-c`
`∴ lim_(x->c)g(x)=g(c)`
So, g is continuous at all points x < 0.
Case II:
`"If c < 0 , then "g(c)=-c lim_(x->c)g(x)=lim_(x->c)(-x)=-c`
`∴ lim_(x->c)g(x)=g(c)`
So, g is continuous at all points x > 0.
Case III:
`" if c =0 , then " g (c)=g(0)=0`
` lim_(x->0^-)g(x)= lim_(x->0^-)(- x)=0`
` lim_(x->0^+)g(x)= lim_(x->0^+)(x)=0`
` ∴ lim_(x->0^+)g(x)= lim_(x->0^+)(x)=g(0)`
So, g is continuous at x = 0
From the above three observations, it can be concluded that g is continuous at all points
`h(x)=|x+1|` can be written as
`h(x)=[[-(x+1) if x< -1],[x+1 if x ≥ -1]]`
Clearly, h is defined for every real number.
Let c be a real number.
Case I:
`"if c < - 1, then h (c) = - (c +1) and " lim_(x->c) h (x) = lim_(x->c)[-(x+1)]=-(c + 1)`
` ∴ lim _(x-> c) h (x) = h(c) `
So, h is continuous at all points x < −1.
Case II:
`"if c > - 1, then h (c) = c +1 and " lim_(x->c) h (x) = lim _(x->c)(x + 1)= c + 1`]
` ∴lim _(x->c) h (x) = h(c)`
So, h is continuous at all points x > −1.
Case III:
if c = -1, then h (c) = h (-1) = -1+1 = 0
`lim _(x->- 1^- ) h (x) = lim_(x->-1^-)[-(x+1)]=-(-1+1)=0`
`lim _(x->- 1^+ ) h (x) = lim_(x->-1^+)( x +1)=(-1+1) =0`
`∴lim _(x->- 1^- ) h (x) = lim_(h->-1^+)= h(-1)`
So, h is continuous at x = −1
From the above three observations, it can be concluded that h is continuous at all points of the real line.
So, g and h are continuous functions.
Thus, f = g − h is also a continuous function.
Therefore, f has no point of discontinuity.
APPEARS IN
संबंधित प्रश्न
Examine the following function for continuity:
f(x) = | x – 5|
Discuss the continuity of the function f, where f is defined by `f(x) = {(2x , ","if x < 0),(0, "," if 0 <= x <= 1),(4x, "," if x > 1):}`
Discuss the continuity of the function f, where f is defined by `f(x) = {(-2,"," if x <= -1),(2x, "," if -1 < x <= 1),(2, "," if x > 1):}`
If \[f\left( x \right) = \begin{cases}\frac{x^2 - 1}{x - 1}; for & x \neq 1 \\ 2 ; for & x = 1\end{cases}\] Find whether f(x) is continuous at x = 1.
Discuss the continuity of the following functions at the indicated point(s):
Determine the value of the constant k so that the function
\[f\left( x \right) = \begin{cases}k x^2 , if & x \leq 2 \\ 3 , if & x > 2\end{cases}\text{is continuous at x} = 2 .\]
If \[f\left( x \right) = \begin{cases}\frac{1 - \cos kx}{x \sin x}, & x \neq 0 \\ \frac{1}{2} , & x = 0\end{cases}\text{is continuous at x} = 0, \text{ find } k .\]
If \[f\left( x \right) = \begin{cases}\frac{x - 4}{\left| x - 4 \right|} + a, \text{ if } & x < 4 \\ a + b , \text{ if } & x = 4 \\ \frac{x - 4}{\left| x - 4 \right|} + b, \text{ if } & x > 4\end{cases}\] is continuous at x = 4, find a, b.
For what value of k is the following function continuous at x = 2?
Find the points of discontinuity, if any, of the following functions: \[f\left( x \right) = \begin{cases}\frac{\sin 3x}{x}, & \text{ if } x \neq 0 \\ 4 , & \text{ if } x = 0\end{cases}\]
Find the points of discontinuity, if any, of the following functions: \[f\left( x \right) = \begin{cases}\left| x - 3 \right|, & \text{ if } x \geq 1 \\ \frac{x^2}{4} - \frac{3x}{2} + \frac{13}{4}, & \text{ if } x < 1\end{cases}\]
Discuss the continuity of the function \[f\left( x \right) = \begin{cases}2x - 1 , & \text { if } x < 2 \\ \frac{3x}{2} , & \text{ if } x \geq 2\end{cases}\]
Define continuity of a function at a point.
Let f (x) = | x | + | x − 1|, then
Let \[f\left( x \right) = \begin{cases}\frac{x^4 - 5 x^2 + 4}{\left| \left( x - 1 \right) \left( x - 2 \right) \right|}, & x \neq 1, 2 \\ 6 , & x = 1 \\ 12 , & x = 2\end{cases}\]. Then, f (x) is continuous on the set
The points of discontinuity of the function\[f\left( x \right) = \begin{cases}\frac{1}{5}\left( 2 x^2 + 3 \right) , & x \leq 1 \\ 6 - 5x , & 1 < x < 3 \\ x - 3 , & x \geq 3\end{cases}\text{ is } \left( are \right)\]
Show that the function
\[f\left( x \right) = \begin{cases}\left| 2x - 3 \right| \left[ x \right], & x \geq 1 \\ \sin \left( \frac{\pi x}{2} \right), & x < 1\end{cases}\] is continuous but not differentiable at x = 1.
If \[f\left( x \right) = \begin{cases}a x^2 - b, & \text { if }\left| x \right| < 1 \\ \frac{1}{\left| x \right|} , & \text { if }\left| x \right| \geq 1\end{cases}\] is differentiable at x = 1, find a, b.
Write an example of a function which is everywhere continuous but fails to differentiable exactly at five points.
Discuss the continuity and differentiability of
Is every differentiable function continuous?
If f (x) is differentiable at x = c, then write the value of
Let \[f\left( x \right) = \left( x + \left| x \right| \right) \left| x \right|\]
Let f (x) = |x| and g (x) = |x3|, then
The set of points where the function f (x) = x |x| is differentiable is
If \[f\left( x \right) = \left| \log_e x \right|, \text { then}\]
If f (x) = |3 − x| + (3 + x), where (x) denotes the least integer greater than or equal to x, then f (x) is
Find k, if f(x) =`log (1+3x)/(5x)` for x ≠ 0
= k for x = 0
is continuous at x = 0.
Discuss the continuity of f at x = 1
Where f(X) = `[ 3 - sqrt ( 2x + 7 ) / ( x - 1 )]` For x ≠ 1
= `-1/3` For x = 1
If f(x) = `(e^(2x) - 1)/(ax)` . for x < 0 , a ≠ 0
= 1. for x = 0
= `(log(1 + 7x))/(bx)`. for x > 0 , b ≠ 0
is continuous at x = 0 . then find a and b
Examine the continuity of the following function :
f(x) = x2 - x + 9, for x ≤ 3
= 4x + 3, for x > 3
at x = 3.
Discuss the continuity of the function `f(x) = (3 - sqrt(2x + 7))/(x - 1)` for x ≠ 1
= `-1/3` for x = 1, at x = 1
If the function f is continuous at x = 2, then find 'k' where
f(x) = `(x^2 + 5)/(x - 1),` for 1< x ≤ 2
= kx + 1 , for x > 2
If the function
f(x) = x2 + ax + b, x < 2
= 3x + 2, 2≤ x ≤ 4
= 2ax + 5b, 4 < x
is continuous at x = 2 and x = 4, then find the values of a and b
If f(x) = `(sqrt(2) cos x - 1)/(cot x - 1), x ≠ pi/4` find the value of `"f"(pi/4)` so that f (x) becomes continuous at x = `pi/4`
f(x) = `{{:(3x + 5",", "if" x ≥ 2),(x^2",", "if" x < 2):}` at x = 2
The value of k (k < 0) for which the function f defined as
f(x) = `{((1-cos"kx")/("x"sin"x")"," "x" ≠ 0),(1/2"," "x" = 0):}`
is continuous at x = 0 is: