हिंदी

Discuss the Continuity of the Function (X) = (3 - Sqrt(2x + 7))/(X - 1) for X ≠ 1 = -1/3 For X = 1, at X = 1 - Mathematics and Statistics

Advertisements
Advertisements

प्रश्न

Discuss the continuity of the function `f(x) = (3 - sqrt(2x + 7))/(x - 1)` for x ≠ 1

= `-1/3`   for x = 1, at x = 1

योग

उत्तर

Given `f(1) = (-1)/3`
Consider 

`lim_(x ->1) f(x) = lim_(x ->1) (3 - sqrt(2x + 7))/(x - 1)`

                   = `lim_(x ->1) (3 - sqrt(2x + 7))/(x - 1) xx (3 + sqrt(2x + 7))/(3 + sqrt(2x + 7))`

                  = `lim_(x ->1) (9 - 2x - 7)/((x - 1) (3 + sqrt(2x + 7))`

                 = `lim_(x ->1) (2 - 2x)/((x - 1) (3 + sqrt(2x + 7))`

                 = `lim_(x ->1) (-2(x - 1))/((x - 1) (3 + sqrt(2x + 7))`

                = `lim_(x ->1) (-2)/(3 + sqrt(2x + 7)`

                                                                (`therefore x -> 1, ( x- 1) ≠ 0)`

               = `(-2)/(3 + sqrt(2x + 7)`

               = `(-2)/(3 + sqrt9)`

               = `(-2)/(3 + 3)`

               = `(-2)/6`

               = `(-1)/3`

`lim_(x ->1) f(x) = f(1)`

Function is continuous at x = 1

shaalaa.com
  क्या इस प्रश्न या उत्तर में कोई त्रुटि है?
2013-2014 (October)

APPEARS IN

वीडियो ट्यूटोरियलVIEW ALL [2]

संबंधित प्रश्न

Examine the following function for continuity:

f (x) = x – 5


Discuss the continuity of the function f, where f is defined by `f(x) = {(-2,"," if x <= -1),(2x, "," if -1 < x <= 1),(2, "," if x > 1):}`


A function f(x) is defined as 

\[f\left( x \right) = \begin{cases}\frac{x^2 - 9}{x - 3}; if & x \neq 3 \\ 6 ; if & x = 3\end{cases}\]

Show that f(x) is continuous at x = 3

 

Let \[f\left( x \right) = \begin{cases}\frac{1 - \cos x}{x^2}, when & x \neq 0 \\ 1 , when & x = 0\end{cases}\] Show that f(x) is discontinuous at x = 0.

 

 


Discuss the continuity of the following functions at the indicated point(s): (iv) \[f\left( x \right) = \left\{ \begin{array}{l}\frac{e^x - 1}{\log(1 + 2x)}, if & x \neq a \\ 7 , if & x = 0\end{array}at x = 0 \right.\]


Show that 

\[f\left( x \right) = \begin{cases}1 + x^2 , if & 0 \leq x \leq 1 \\ 2 - x , if & x > 1\end{cases}\]


Determine the values of a, b, c for which the function f(x) = `{((sin(a + 1)x + sin x)/x, "for"   x < 0),(x, "for"  x = 0),((sqrt(x + bx^2) - sqrtx)/(bx^(3"/"2)), "for"  x > 0):}` is continuous at x = 0.


Discuss the continuity of the function  \[f\left( x \right) = \begin{cases}2x - 1 , & \text { if }  x < 2 \\ \frac{3x}{2} , & \text{ if  } x \geq 2\end{cases}\]


If  \[f\left( x \right) = \begin{cases}\frac{\sin (a + 1) x + \sin x}{x} , & x < 0 \\ c , & x = 0 \\ \frac{\sqrt{x + b x^2} - \sqrt{x}}{bx\sqrt{x}} , & x > 0\end{cases}\]is continuous at x = 0, then 


The points of discontinuity of the function\[f\left( x \right) = \begin{cases}\frac{1}{5}\left( 2 x^2 + 3 \right) , & x \leq 1 \\ 6 - 5x , & 1 < x < 3 \\ x - 3 , & x \geq 3\end{cases}\text{ is } \left( are \right)\]  


The function f (x) = sin−1 (cos x) is


The function f (x) = e|x| is


If f (x) = |3 − x| + (3 + x), where (x) denotes the least integer greater than or equal to x, then f (x) is


If the function f is continuous at = 2, then find f(2) where f(x) = `(x^5 - 32)/(x - 2)`, for ≠ 2.


Discuss the continuity of the function at the point given. If the function is discontinuous, then remove the discontinuity.

f (x) = `(sin^2 5x)/x^2` for x ≠ 0 
= 5   for x = 0, at x = 0


 If the function f is continuous at x = I, then find f(1), where f(x) = `(x^2 - 3x + 2)/(x - 1),` for x ≠ 1


The function given by f (x) = tanx is discontinuous on the set ______.


The set of points where the functions f given by f(x) = |x – 3| cosx is differentiable is ______.


f(x) = `{{:((2^(x + 2) - 16)/(4^x - 16)",",  "if"  x ≠ 2),("k"",",  "if"  x = 2):}` at x = 2


f(x) = `{{:((1 - cos "k"x)/(xsinx)",",   "if"  x ≠ 0),(1/2",",  "if"  x = 0):}` at x = 0


Share
Notifications

Englishहिंदीमराठी


      Forgot password?
Use app×