Advertisements
Advertisements
प्रश्न
Show that f(x) = |x – 5| is continuous but not differentiable at x = 5.
उत्तर
We have f(x) = |x – 5|
⇒ f(x) = `{{:(-(x - 5)",", "if" x - 5 < 0 or x < 5),(x - 5",", "if" x - 5 > 0 or x > 5):}`
For continuity at x = 5
L.H.L. `lim_("h" -> 5^-) "f"(x)` = – (x – 5)
= `lim_("h" -> 0) - (5 - "h" - 5)`
= `lim_("h" -> 0) "h" = 0`
R.H.L. `lim_(x -> 5^+) "f"(x)` = x – 5
= `lim_("h" -> 0) (5 + "h" - 5)`
= `lim_("h" -> 0) "h"` = 0
L.H.L. = R.H.L.
So, f(x) is continuous at x = 5
Now, for differentiability
Lf'(5) = `lim_("h" -> 0) ("f"(5 - "h") - "f"(5))/(-"h")`
= `lim_("h" -> 0) (-(5 - "h" - 5) - (5 - 5))/(-"h")`
= `lim_("h" -> 0) "h"/(-"h")`
= – 1
Rf'(5) = `lim_("h" -> 0) ("f"(5 + "h") - "f"(5))/"h"`
= `lim_("h" -> 0) ((5 + "h" - 5) - (5 - 5))/"h"`
= `lim_("h" -> 0) ("h" - 0)/"h"`
= 1
∵ Lf'(5) ≠ Rd'(5)
Hence, f(x) is not differentiable at x = 5.
APPEARS IN
संबंधित प्रश्न
Examine the following function for continuity:
f(x) = | x – 5|
Discuss the continuity of the function f, where f is defined by `f(x) = {(3, ","if 0 <= x <= 1),(4, ","if 1 < x < 3),(5, ","if 3 <= x <= 10):}`
Discuss the continuity of the function f, where f is defined by `f(x) = {(2x , ","if x < 0),(0, "," if 0 <= x <= 1),(4x, "," if x > 1):}`
Discuss the continuity of the following functions at the indicated point(s):
Show that
\[f\left( x \right) = \begin{cases}\frac{\sin 3x}{\tan 2x} , if x < 0 \\ \frac{3}{2} , if x = 0 \\ \frac{\log(1 + 3x)}{e^{2x} - 1} , if x > 0\end{cases}\text{is continuous at} x = 0\]
Discuss the continuity of the function f(x) at the point x = 1/2, where \[f\left( x \right) = \begin{cases}x, 0 \leq x < \frac{1}{2} \\ \frac{1}{2}, x = \frac{1}{2} \\ 1 - x, \frac{1}{2} < x \leq 1\end{cases}\]
Determine the value of the constant k so that the function
\[f\left( x \right) = \left\{ \begin{array}{l}\frac{x^2 - 3x + 2}{x - 1}, if & x \neq 1 \\ k , if & x = 1\end{array}\text{is continuous at x} = 1 \right.\]
Determine the values of a, b, c for which the function f(x) = `{((sin(a + 1)x + sin x)/x, "for" x < 0),(x, "for" x = 0),((sqrt(x + bx^2) - sqrtx)/(bx^(3"/"2)), "for" x > 0):}` is continuous at x = 0.
In each of the following, find the value of the constant k so that the given function is continuous at the indicated point; \[f\left( x \right) = \begin{cases}k( x^2 + 2), \text{if} & x \leq 0 \\ 3x + 1 , \text{if} & x > 0\end{cases}\]
If \[f\left( x \right) = \begin{cases}a \sin\frac{\pi}{2}\left( x + 1 \right), & x \leq 0 \\ \frac{\tan x - \sin x}{x^3}, & x > 0\end{cases}\] is continuous at x = 0, then a equals
The points of discontinuity of the function\[f\left( x \right) = \begin{cases}\frac{1}{5}\left( 2 x^2 + 3 \right) , & x \leq 1 \\ 6 - 5x , & 1 < x < 3 \\ x - 3 , & x \geq 3\end{cases}\text{ is } \left( are \right)\]
Show that the function
\[f\left( x \right) = \begin{cases}\left| 2x - 3 \right| \left[ x \right], & x \geq 1 \\ \sin \left( \frac{\pi x}{2} \right), & x < 1\end{cases}\] is continuous but not differentiable at x = 1.
If f is defined by f (x) = x2, find f'(2).
Write the points where f (x) = |loge x| is not differentiable.
The function f (x) = e−|x| is
If \[f\left( x \right) = x^2 + \frac{x^2}{1 + x^2} + \frac{x^2}{\left( 1 + x^2 \right)} + . . . + \frac{x^2}{\left( 1 + x^2 \right)} + . . . . ,\]
then at x = 0, f (x)
Evaluate :`int Sinx/(sqrt(cos^2 x-2 cos x-3)) dx`
Discuss the continuity of the function f at x = 0
If f(x) = `(2^(3x) - 1)/tanx`, for x ≠ 0
= 1, for x = 0
If the function f is continuous at = 2, then find f(2) where f(x) = `(x^5 - 32)/(x - 2)`, for ≠ 2.
The total cost C for producing x units is Rs (x2 + 60x + 50) and the price is Rs (180 - x) per unit. For how many units the profit is maximum.
Examine the continuity off at x = 1, if
f (x) = 5x - 3 , for 0 ≤ x ≤ 1
= x2 + 1 , for 1 ≤ x ≤ 2
If y = ( sin x )x , Find `dy/dx`
Discuss the continuity of the function at the point given. If the function is discontinuous, then remove the discontinuity.
f (x) = `(sin^2 5x)/x^2` for x ≠ 0
= 5 for x = 0, at x = 0
Let f(x) = `{{:((1 - cos 4x)/x^2",", "if" x < 0),("a"",", "if" x = 0),(sqrt(x)/(sqrt(16) + sqrt(x) - 4)",", "if" x > 0):}`. For what value of a, f is continuous at x = 0?
The function given by f (x) = tanx is discontinuous on the set ______.
The number of points at which the function f(x) = `1/(log|x|)` is discontinuous is ______.
Write the number of points where f(x) = |x + 2| + |x - 3| is not differentiable.