मराठी

Discuss the Continuity of F ( X ) = { 2 X − 1 , X < 0 2 X + 1 , X ≥ 0 a T X = 0 - Mathematics

Advertisements
Advertisements

प्रश्न

Discuss the continuity of \[f\left( x \right) = \begin{cases}2x - 1 & , x < 0 \\ 2x + 1 & , x \geq 0\end{cases} at x = 0\]

उत्तर

\[f\left( x \right) = \begin{cases}2x - 1 & , x < 0 \\ 2x + 1 & , x \geq 0\end{cases}\]

\[\left( LHL at x = 0 \right) = \lim_{x \to 0^-} f\left( x \right) = 2\left( 0 \right) - 1 = - 1 \]

\[\left( RHL at x = 0 \right) = \lim_{x \to 0^+} f\left( x \right) = 2\left( 0 \right) + 1 = 1\]

\[ \Rightarrow \lim_{x \to 0^-} f\left( x \right) \neq \lim_{x \to 0 +} f\left( x \right)\]

Hence, f(x) is discontinuous at x = 0.

 
shaalaa.com
  या प्रश्नात किंवा उत्तरात काही त्रुटी आहे का?
पाठ 9: Continuity - Exercise 9.1 [पृष्ठ १८]

APPEARS IN

आरडी शर्मा Mathematics [English] Class 12
पाठ 9 Continuity
Exercise 9.1 | Q 17 | पृष्ठ १८

व्हिडिओ ट्यूटोरियलVIEW ALL [4]

संबंधित प्रश्‍न

Find the value of 'k' if the function

`f(X)=(tan7x)/(2x) ,  "for " x != 0 `

`=k`,            for x=0

is continuos at x=0


Examine the continuity of the following function :

`{:(,,f(x)= x^2 -x+9,"for",x≤3),(,,=4x+3,"for",x>3):}}"at "x=3`


If f(x)= `{((sin(a+1)x+2sinx)/x,x<0),(2,x=0),((sqrt(1+bx)-1)/x,x>0):}`

is continuous at x = 0, then find the values of a and b.


Discuss the continuity of the function f, where f is defined by `f(x) = {(3, ","if 0 <= x <= 1),(4, ","if 1 < x < 3),(5, ","if 3 <= x <= 10):}`


Show that

\[f\left( x \right)\] = \begin{cases}\frac{x - \left| x \right|}{2}, when & x \neq 0 \\ 2 , when & x = 0\end{cases}

is discontinuous at x = 0.

 

Discuss the continuity of the following functions at the indicated point(s): (iv) \[f\left( x \right) = \left\{ \begin{array}{l}\frac{e^x - 1}{\log(1 + 2x)}, if & x \neq a \\ 7 , if & x = 0\end{array}at x = 0 \right.\]


Find the value of k for which \[f\left( x \right) = \begin{cases}\frac{1 - \cos 4x}{8 x^2}, \text{ when}  & x \neq 0 \\ k ,\text{ when }  & x = 0\end{cases}\] is continuous at x = 0;

 


Given the function  
\[f\left( x \right) = \frac{1}{x + 2}\] . Find the points of discontinuity of the function f(f(x)).

Define continuity of a function at a point.

 

If f (x) = | x − a | ϕ (x), where ϕ (x) is continuous function, then


If the function \[f\left( x \right) = \begin{cases}\left( \cos x \right)^{1/x} , & x \neq 0 \\ k , & x = 0\end{cases}\] is continuous at x = 0, then the value of k is


If \[f\left( x \right) = \begin{cases}mx + 1 , & x \leq \frac{\pi}{2} \\ \sin x + n, & x > \frac{\pi}{2}\end{cases}\] is continuous at \[x = \frac{\pi}{2}\]  , then

 


The value of f (0), so that the function 

\[f\left( x \right) = \frac{\sqrt{a^2 - ax + x^2} - \sqrt{a^2 + ax + x^2}}{\sqrt{a + x} - \sqrt{a - x}}\]   becomes continuous for all x, given by

The value of b for which the function 

\[f\left( x \right) = \begin{cases}5x - 4 , & 0 < x \leq 1 \\ 4 x^2 + 3bx , & 1 < x < 2\end{cases}\] is continuous at every point of its domain, is 

If  \[f\left( x \right) = \begin{cases}a \sin\frac{\pi}{2}\left( x + 1 \right), & x \leq 0 \\ \frac{\tan x - \sin x}{x^3}, & x > 0\end{cases}\] is continuous at x = 0, then a equals


If  \[f\left( x \right) = \left\{ \begin{array}a x^2 + b , & 0 \leq x < 1 \\ 4 , & x = 1 \\ x + 3 , & 1 < x \leq 2\end{array}, \right.\] then the value of (ab) for which f (x) cannot be continuous at x = 1, is

 


The value of k which makes \[f\left( x \right) = \begin{cases}\sin\frac{1}{x}, & x \neq 0 \\ k , & x = 0\end{cases}\]    continuous at x = 0, is

 


The points of discontinuity of the function 

\[f\left( x \right) = \begin{cases}2\sqrt{x} , & 0 \leq x \leq 1 \\ 4 - 2x , & 1 < x < \frac{5}{2} \\ 2x - 7 , & \frac{5}{2} \leq x \leq 4\end{cases}\text{ is } \left( \text{ are }\right)\] 


The points of discontinuity of the function\[f\left( x \right) = \begin{cases}\frac{1}{5}\left( 2 x^2 + 3 \right) , & x \leq 1 \\ 6 - 5x , & 1 < x < 3 \\ x - 3 , & x \geq 3\end{cases}\text{ is } \left( are \right)\]  


Show that the function 

\[f\left( x \right) = \begin{cases}\left| 2x - 3 \right| \left[ x \right], & x \geq 1 \\ \sin \left( \frac{\pi x}{2} \right), & x < 1\end{cases}\] is continuous but not differentiable at x = 1.


Write an example of a function which is everywhere continuous but fails to differentiable exactly at five points.


Define differentiability of a function at a point.

 

Write the points of non-differentiability of 

\[f \left( x \right) = \left| \log \left| x \right| \right| .\]

If \[f\left( x \right) = x^2 + \frac{x^2}{1 + x^2} + \frac{x^2}{\left( 1 + x^2 \right)} + . . . + \frac{x^2}{\left( 1 + x^2 \right)} + . . . . ,\] 

then at x = 0, f (x)


Find whether the following function is differentiable at x = 1 and x = 2 or not : \[f\left( x \right) = \begin{cases}x, & & x < 1 \\ 2 - x, & & 1 \leq x \leq 2 \\ - 2 + 3x - x^2 , & & x > 2\end{cases}\] .


Evaluate :`int Sinx/(sqrt(cos^2 x-2 cos x-3)) dx`


Find k, if the function f is continuous at x = 0, where

`f(x)=[(e^x - 1)(sinx)]/x^2`,      for x ≠ 0

     = k                             ,        for x = 0


If f is continuous at x = 0 then find f(0) where f(x) = `[5^x + 5^-x - 2]/x^2`, x ≠ 0


Find `dy/dx if y = tan^-1 ((6x)/[ 1 - 5x^2])`


Examine the continuity of the followin function : 

  `{:(,f(x),=x^2cos(1/x),",","for "x!=0),(,,=0,",","for "x=0):}}" at "x=0`   


The probability distribution function of continuous random variable X is given by
f( x ) = `x/4`,  0 < x < 2
        = 0,       Otherwise
Find P( x ≤ 1)


Let f(x) = `{{:((1 - cos 4x)/x^2",",  "if"  x < 0),("a"",",  "if"  x = 0),(sqrt(x)/(sqrt(16) + sqrt(x) - 4)",", "if"  x > 0):}`. For what value of a, f is continuous at x = 0?


f(x) = `{{:((2x^2 - 3x - 2)/(x - 2)",", "if"  x ≠ 2),(5",", "if"  x = 2):}` at x = 2


f(x) = `{{:(|x - "a"| sin  1/(x - "a")",",  "if"  x ≠ 0),(0",",  "if"  x = "a"):}` at x = a


Given the function f(x) = `1/(x + 2)`. Find the points of discontinuity of the composite function y = f(f(x))


Examine the differentiability of f, where f is defined by
f(x) = `{{:(x^2 sin  1/x",",  "if"  x ≠ 0),(0",", "if"  x = 0):}` at x = 0


Find the values of p and q so that f(x) = `{{:(x^2 + 3x + "p"",",  "if"  x ≤ 1),("q"x + 2",",  "if"  x > 1):}` is differentiable at x = 1


Write the number of points where f(x) = |x + 2| + |x - 3| is not differentiable.


Share
Notifications

Englishहिंदीमराठी


      Forgot password?
Use app×