Advertisements
Advertisements
प्रश्न
If `xsqrt(1 - y^2) + ysqrt(1 - x^2)` = 1, then show that `"dy"/"dx" = -sqrt((1 - y^2)/(1 - x^2)`.
उत्तर
`xsqrt(1 - y^2) + ysqrt(1 - x^2)` = 1
∴ `ysqrt(1 - x^2) + xsqrt(1 - y^2)` = 1
Differentiating both sides w.r.t. x, we get
`y."d"/"dx"(sqrt(1 - x^2)) + sqrt(1 - x^2)."dy"/"dx" + x."d"/"dx"(sqrt(1 - y^2)) + sqrt(1 - y^2)."d"/"dx"(x)` = 0
∴ `y xx (1)/(2sqrt(1 - x^2))."d"/"dx"(1 - x^2) + sqrt(1 - x^2)."dy"/"dx" + x xx (1)/(2sqrt(1 - y^2))."d"/"dx"(1 - y^2) + sqrt(1 - y^2) xx 1` = 0
∴ `y/(2sqrt(1 - x^2)) xx (0 - 2x) + sqrt(1 - x^2)."dy"/"dx" + x/(2sqrt(1 - y^2)) xx (0 - 2y"dy"/"dx") + sqrt(1 - y^2)` = 0
∴ `(-xy)/sqrt(1 - x^2) + sqrt(1 - x^2)."dy"/"dx" - "xy"/sqrt(1 - y^2)."dy"/"dx" + sqrt(1 - y^2)` = 0
∴ `(sqrt(1 - x^2) - "xy"/sqrt(1 - y^2))"dy"/"dx" = "xy"/sqrt(1 - x^2) - sqrt(1 - y^2)`
∴ `[(sqrt(1 - x^2).sqrt(1 - y^2) - xy)/sqrt(1 - y^2)]"dy"/"dx" = (xy - sqrt(1 - x^2).sqrt(1 - y^2))/sqrt(1 - x^2)`
∴ `(1)/sqrt(1 - y^2)."dy"/"dx" = (-1)/sqrt(1 - x^2)`
∴ `"dy"/"dx" = -sqrt((1 - y^2)/(1 - x^2)`
APPEARS IN
संबंधित प्रश्न
If y=eax ,show that `xdy/dx=ylogy`
Find `dy/dx` in the following:
2x + 3y = sin y
Find `dy/dx` in the following.
x3 + x2y + xy2 + y3 = 81
Find `dy/dx` in the following:
sin2 y + cos xy = k
if `x^y + y^x = a^b`then Find `dy/dx`
If \[f\left( x \right) = x^3 + 7 x^2 + 8x - 9\]
, find f'(4).
If \[\lim_{x \to c} \frac{f\left( x \right) - f\left( c \right)}{x - c}\] exists finitely, write the value of \[\lim_{x \to c} f\left( x \right)\]
Find `"dy"/"dx"` ; if x = sin3θ , y = cos3θ
Differentiate e4x + 5 w.r..t.e3x
Differentiate tan-1 (cot 2x) w.r.t.x.
If x = tan-1t and y = t3 , find `(dy)/(dx)`.
If `sin^-1((x^5 - y^5)/(x^5 + y^5)) = pi/(6), "show that" "dy"/"dx" = x^4/(3y^4)`
If y = `sqrt(cosx + sqrt(cosx + sqrt(cosx + ... ∞)`, then show that `"dy"/"dx" = sinx/(1 - 2y)`.
Find `"dy"/"dx"`, if : x = `sqrt(a^2 + m^2), y = log(a^2 + m^2)`
Find `"dy"/"dx"`, if : x = sinθ, y = tanθ
Find `"dy"/"dx"`, if : x = `(t + 1/t)^a, y = a^(t+1/t)`, where a > 0, a ≠ 1, t ≠ 0.
Find `"dy"/"dx"` if : x = a cos3θ, y = a sin3θ at θ = `pi/(3)`
Find `"dy"/"dx"` if : x = t + 2sin (πt), y = 3t – cos (πt) at t = `(1)/(2)`
DIfferentiate x sin x w.r.t. tan x.
Differentiate `tan^-1((x)/(sqrt(1 - x^2))) w.r.t. sec^-1((1)/(2x^2 - 1))`.
Differentiate `tan^-1((cosx)/(1 + sinx)) w.r.t. sec^-1 x.`
Find `(d^2y)/(dx^2)` of the following : x = sinθ, y = sin3θ at θ = `pi/(2)`
Find `(d^2y)/(dx^2)` of the following : x = a cos θ, y = b sin θ at θ = `π/4`.
If y = `e^(mtan^-1x)`, show that `(1 + x^2)(d^2y)/(dx^2) + (2x - m)"dy"/"dx"` = 0.
If `sec^-1((7x^3 - 5y^3)/(7^3 + 5y^3)) = "m", "show" (d^2y)/(dx^2)` = 0.
If y = sin (m cos–1x), then show that `(1 - x^2)(d^2y)/(dx^2) - x"dy"/"dx" + m^2y` = 0.
Find the nth derivative of the following : (ax + b)m
Find the nth derivative of the following : eax+b
Find the nth derivative of the following : cos x
Find the nth derivative of the following : sin (ax + b)
Find the nth derivative of the following : `(1)/(3x - 5)`
Find the nth derivative of the following:
y = e8x . cos (6x + 7)
Choose the correct option from the given alternatives :
If f(x) = `sin^-1((4^(x + 1/2))/(1 + 2^(4x)))`, which of the following is not the derivative of f(x)?
Choose the correct option from the given alternatives :
If y = sin (2sin–1 x), then dx = ........
Choose the correct option from the given alternatives :
If y = `tan^-1(x/(1 + sqrt(1 - x^2))) + sin[2tan^-1(sqrt((1 - x)/(1 + x)))] "then" "dy"/"dx"` = ...........
Differentiate the following w.r.t. x : `sin[2tan^-1(sqrt((1 - x)/(1 + x)))]`
Differentiate the following w.r.t. x : `tan^-1((sqrt(x)(3 - x))/(1 - 3x))`
Differentiate the following w.r.t. x:
`tan^-1(x/(1 + 6x^2)) + cot^-1((1 - 10x^2)/(7x))`
If `x = e^(x/y)`, then show that `"dy"/"dx" = (x - y)/(xlogx)`
If log y = log (sin x) – x2, show that `(d^2y)/(dx^2) + 4x "dy"/"dx" + (4x^2 + 3)y` = 0.
Find `"dy"/"dx"` if, x3 + y3 + 4x3y = 0
Find `"dy"/"dx"` if, x3 + x2y + xy2 + y3 = 81
Solve the following:
If `"e"^"x" + "e"^"y" = "e"^((x + y))` then show that, `"dy"/"dx" = - "e"^"y - x"`.
Choose the correct alternative.
If y = 5x . x5, then `"dy"/"dx" = ?`
Choose the correct alternative.
If ax2 + 2hxy + by2 = 0 then `"dy"/"dx" = ?`
Choose the correct alternative.
If `"x"^4."y"^5 = ("x + y")^("m + 1")` then `"dy"/"dx" = "y"/"x"` then m = ?
If `"x"^7*"y"^9 = ("x + y")^16`, then show that `"dy"/"dx" = "y"/"x"`
Find `"dy"/"dx"` if x = `"e"^"3t", "y" = "e"^(sqrt"t")`.
If x = a t4 y = 2a t2 then `("d"y)/("d"x)` = ______
State whether the following statement is True or False:
If `sqrt(x) + sqrt(y) = sqrt("a")`, then `("d"y)/("d"x) = 1/(2sqrt(x)) + 1/(2sqrt(y)) = 1/(2sqrt("a"))`
`(dy)/(dx)` of `2x + 3y = sin x` is:-
If y = y(x) is an implicit function of x such that loge(x + y) = 4xy, then `(d^2y)/(dx^2)` at x = 0 is equal to ______.
If 2x + 2y = 2x+y, then `(dy)/(dx)` is equal to ______.
If y = `sqrt(tan x + sqrt(tanx + sqrt(tanx + .... + ∞)`, then show that `dy/dx = (sec^2x)/(2y - 1)`.
Find `dy/dx` at x = 0.
If `tan ((x + y)/(x - y))` = k, then `dy/dx` is equal to ______.
`"If" log(x+y) = log(xy)+a "then show that", dy/dx=(-y^2)/x^2`
If log(x+y) = log(xy) + a then show that, `dy/dx = (-y^2)/x^2`
Find `dy/dx` if, x = `e^(3t)`, y = `e^sqrtt`
Solve the following.
If log(x + y) = log(xy) + a then show that, `dy/dx = (-y^2)/x^2`
Find `dy/dx` if, x = e3t, y = `e^sqrtt`
Find `dy/dx` if, `x = e^(3t), y = e^sqrtt`
Find `dy/dx` if, `x = e^(3t), y = e^(sqrtt)`
Find `dy/dx"if", x= e^(3t), y=e^sqrtt`
If log(x + y) = log(xy) + a then show that, `dy/dx = (-y^2)/x^2`
If log(x + y) = log(xy) + a, then show that `dy/dx = (-y^2)/x^2`