मराठी

Examine the Differentialibilty of the Function F Defined by F ( X ) = ⎧ ⎪ ⎨ ⎪ ⎩ 2 X + 3 I F − 3 ≤ X ≤ − 2 + 1 X + 2 F − 2 ≤ X < 0 I F 0 ≤ X ≤ 1 - Mathematics

Advertisements
Advertisements

प्रश्न

Examine the differentialibilty of the function f defined by

\[f\left( x \right) = \begin{cases}2x + 3 & \text { if }- 3 \leq x \leq - 2 \\ \begin{array}xx + 1 \\ x + 2\end{array} & \begin{array} i\text { if } - 2 \leq x < 0 \\\text {  if } 0 \leq x \leq 1\end{array}\end{cases}\] 

थोडक्यात उत्तर

उत्तर

\[f\left( x \right) = \begin{cases}2x + 3 & \text { if }- 3 \leq x \leq - 2 \\ \begin{array}xx + 1 \\ x + 2\end{array} & \begin{array} i\text { if } - 2 \leq x < 0 \\\text {  if } 0 \leq x \leq 1\end{array}\end{cases}\] 

\[f\left( x \right) = \begin{cases}2x + 3 & \text { if }- 3 \leq x \leq - 2 \\ \begin{array}11 \\ 1\end{array} & \begin{array} i\text { if } - 2 \leq x < 0 \\\text {  if } 0 \leq x \leq 1\end{array}\end{cases}\] 

Now,
\[\text { LHL  }= \lim_{x \to - 2^-} f'\left( x \right) = \lim_{x \to - 2^-} 2 = 2\]
\[\text { RHL } = \lim_{x \to - 2^+} f'\left( x \right) = \lim_{x \to - 2^+} 1 = 1\]
\[\text { Since, at x } = - 2, \text { LHL} \neq \text{RHL}\]
\[\text { Hence,} f\left( x \right) \text { is not differentiable at x } = - 2\]
Again,
\[\text { LHL }= \lim_{x \to 0^-} f'\left( x \right) = \lim_{x \to 0^-} 1 = 1\]
\[\text { RHL } = \lim_{x \to 0^+} f'\left( x \right) = \lim_{x \to 0^+} 1 = 1\]
\[\text { Since, at x = 0, LHL = RHL }\]
\[\text { Hence }, f\left( x \right) \text { is differentiable at x } = 0\]

shaalaa.com
  या प्रश्नात किंवा उत्तरात काही त्रुटी आहे का?
पाठ 10: Differentiability - Exercise 10.2 [पृष्ठ १६]

APPEARS IN

आरडी शर्मा Mathematics [English] Class 12
पाठ 10 Differentiability
Exercise 10.2 | Q 7 | पृष्ठ १६

संबंधित प्रश्‍न

Find `dy/dx` in the following:

sin2 y + cos xy = k


Find `"dy"/"dx"`, if : `x = cos^-1((2t)/(1 + t^2)), y = sec^-1(sqrt(1 + t^2))`


Find `dy/dx` if : x = 2 cos t + cos 2t, y = 2 sin t – sin 2t at t = `pi/(4)`


DIfferentiate x sin x w.r.t. tan x.


Find `(d^2y)/(dx^2)` of the following : x = a(θ – sin θ), y = a(1 – cos θ)


Find `(d^2y)/(dx^2)` of the following : x = sinθ, y = sin3θ at θ = `pi/(2)`


If y = x + tan x, show that `cos^2x.(d^2y)/(dx^2) - 2y + 2x` = 0.


If 2y = `sqrt(x + 1) + sqrt(x - 1)`, show that 4(x2 – 1)y2 + 4xy1 – y = 0.


If y = sin (m cos–1x), then show that `(1 - x^2)(d^2y)/(dx^2) - x"dy"/"dx" + m^2y` = 0.


If x2 + 6xy + y2 = 10, show that `(d^2y)/(dx^2) = (80)/(3x + y)^3`.


Find the nth derivative of the following : cos x


Find the nth derivative of the following : sin (ax + b)


Find the nth derivative of the following : `(1)/(3x - 5)`


Choose the correct option from the given alternatives :

If f(x) = `sin^-1((4^(x + 1/2))/(1 + 2^(4x)))`, which of the following is not the derivative of f(x)?


Differentiate the following w.r.t. x : `sin^2[cot^-1(sqrt((1 + x)/(1 - x)))]`


Differentiate the following w.r.t. x : `cos^-1((sqrt(1 + x) - sqrt(1 - x))/2)`


Differentiate the following w.r.t. x:

`tan^-1(x/(1 + 6x^2)) + cot^-1((1 - 10x^2)/(7x))`


If `sqrt(y + x) + sqrt(y - x)` = c, show that `"dy"/"dx" = y/x - sqrt(y^2/x^2 - 1)`.


Differentiate log `[(sqrt(1 + x^2) + x)/(sqrt(1 + x^2 - x)]]` w.r.t. cos (log x).


Choose the correct alternative.

If y = 5x . x5, then `"dy"/"dx" = ?` 


Choose the correct alternative.

If `"x"^4."y"^5 = ("x + y")^("m + 1")` then `"dy"/"dx" = "y"/"x"` then m = ?


Choose the correct alternative.

If x = `("e"^"t" + "e"^-"t")/2, "y" = ("e"^"t" - "e"^-"t")/2`  then `"dy"/"dx"` = ? 


If y = `("x" + sqrt("x"^2 - 1))^"m"`, then `("x"^2 - 1) "dy"/"dx"` = ______.


If x2 + y2 = 1, then `(d^2x)/(dy^2)` = ______.


If y = `sqrt(tansqrt(x)`, find `("d"y)/("d"x)`.


If x = sin θ, y = tan θ, then find `("d"y)/("d"x)`.


State whether the following statement is True or False:

If `sqrt(x) + sqrt(y) = sqrt("a")`, then `("d"y)/("d"x) = 1/(2sqrt(x)) + 1/(2sqrt(y)) = 1/(2sqrt("a"))`


y = `e^(x3)`


Find `dy/dx if, x= e^(3t), y = e^sqrtt`


Find `dy/dx` if , x = `e^(3t), y = e^(sqrtt)`


If log (x + y) = log (xy) + a then show that, `dy/dx = (−y^2)/x^ 2`


If log (x+y) = log (xy) + a then show that, `dy/dx= (-y^2)/(x^2)`


Find `dy/dx` if, `x = e^(3t), y = e^(sqrtt)`


If log(x + y) = log(xy) + a then show that, `dy/dx = (−y^2)/x^2`


Find `dy/(dx)  "if" , x = e^(3t), y = e^sqrtt`. 


If log(x + y) = log(xy) + a then show that, `dy/dx = (-y^2)/x^2`


If log(x + y) = log(xy) + a, then show that `dy/dx = (-y^2)/x^2`


Share
Notifications

Englishहिंदीमराठी


      Forgot password?
Use app×