Advertisements
Advertisements
प्रश्न
If x = `(4t)/(1 + t^2), y = 3((1 - t^2)/(1 + t^2))` then show that `dy/dx = (-9x)/(4y)`.
उत्तर
x = `(4t)/(1 + t^2)`
Differentiating both sides w.r.t. ‘t’, we get
`dx/dt = ((1 + t^2)*d/dx (4t) - 4t * d/dx (1 + t^2))/(1 + t^2)^2`
`= ((1 + t^2)(4) - 4t(0 + 2t))/(1 + t^2)^2`
`= (4 + 4t^2 - 8t^2)/(1 + t^2)^2`
`= (4 - 4t^2)/(1 + t^2)^2`
`= (4(1 - t^2))/(1 + t^2)^2`
y = `3((1 - t^2)/(1 + t^2))`
Differentiating both sides w.r.t. ‘t’, we get
`dy/dt = 3 d/dx ((1 - t^2)/(1 + t^2))`
`= 3 [((1 + t^2) d/dt (1 - t^2) - (1 - t^2) * d/dt (1 + t^2))/(1 + t^2)^2]`
`= 3[((1 + t^2)(0 - 2t) - (1 - t^2)(0 + 2t))/(1 + t^2)^2]`
`= 3 [(-2t (1 + t^2) - 2t(1 - t^2))/(1 + t^2)^2]`
`= 3(- 2t) [(1 + t^2 + 1 - t^2)/(1 + t^2)^2]`
`= - 6t xx 2/(1 + t^2)^2`
`= (- 12t)/(1 + t^2)^2`
∴ `dy/dx = ((dy/dt))/((dx/dt)) = ((-12t)/(1 + t^2)^2)/((4(1 - t^2))/(1 + t^2)^2)`
∴ `dy/dx = (- 3t)/(1 - t^2)` ....(i)
Also `(- 9x)/(4y) = (- 9((4t)/(1 + t^2)))/(4xx3 ((1 - t^2)/(1 + t^2))) = (- 3t)/(1 - t^2)` ....(ii)
From (i) and (ii), we get
`dy/dx = (- 9x)/(4y)`
संबंधित प्रश्न
Find `"dy"/"dx"`, if x = `sqrt(1 + "u"^2), "y" = log (1 + "u"^2)`
Solve the following.
If x = `"a"(1 - 1/"t"), "y" = "a"(1 + 1/"t")`, then show that `"dy"/"dx" = - 1`
If x = t . log t, y = tt, then show that `"dy"/"dx" - "y" = 0`
Choose the correct alternative.
If x = 2at2 , y = 4at, then `"dy"/"dx" = ?`
If x = `y + 1/y`, then `dy/dx` = ____.
Find `"dy"/"dx"` if x = 5t2, y = 10t.
If x sin(a + y) + sin a cos(a + y) = 0 then show that `("d"y)/("d"x) = (sin^2("a" + y))/(sin"a")`
Choose the correct alternative:
If x = 2am, y = 2am2, where m be the parameter, then `("d"y)/("d"x)` = ?
State whether the following statement is True or False:
If x = 2at, y = 2a, where t is parameter, then `("d"y)/("d"x) = 1/"t"`
State whether the following statement is True or False:
If x = 5m, y = m, where m is parameter, then `("d"y)/("d"x) = 1/5`
If x = `(4"t")/(1 + "t"^2)`, y = `3((1 - "t"^2)/(1 + "t"^2))`, then show that `("d"y)/("d"x) = (-9x)/(4y)`
If x = `sqrt(1 + u^2)`, y = `log(1 + u^2)`, then find `(dy)/(dx).`
Find `dy/dx` if, x = e3t, y = `e^((4t + 5))`
If x = f(t) and y = g(t) are differentiable functions of t, then prove that:
`dy/dx = ((dy//dt))/((dx//dt))`, if `dx/dt ≠ 0`
Hence, find `dy/dx` if x = a cot θ, y = b cosec θ.
Find `dy/dx` if, x = e3t, y = `e^((4t+5))`
Find `dy/dx if, x = e^(3t),y=e^((4t+5))`
Find `dy/dx` if,
`x = e ^(3^t), y = e^((4t + 5))`
Find `dy/dx` if, `x=e^(3t), y=e^((4t+5))`
Find `dy/dx` if x= `e^(3t)`, y =`e^((4t+5))`
Find `dy/dx if, x= e^(3t)"," y = e^((4t+5))`
Find `dy/dx` if, x = `e^(3t)`, y = `e^((4t + 5))`.