Advertisements
Advertisements
Question
Choose the correct alternative.
If x = 2at2 , y = 4at, then `"dy"/"dx" = ?`
Options
`- 1/(2"at"^2)`
`1/(2"at"^3)`
`1/"t"`
`1/"4at"^3`
Solution
`1/"t"`
Explanation:
x = 2at2 , y = 4at
∴ `"dx"/"dt" = 2"a"(2"t") and "dy"/"dx" = 4"a"`
∴ `"dx"/"dt" = 4"at" and "dy"/"dt" = 4"a"`
∴ `"dy"/"dx" = ("dy"/"dt")/("dx"/"dt") = "4a"/"4at" = 1/"t"`
APPEARS IN
RELATED QUESTIONS
Find `"dy"/"dx"`, if x = 2at2 , y = at4
Find `"dy"/"dx"`, if x = e3t, y = `"e"^((4"t" + 5))`
Find `"dy"/"dx"`, if x = `sqrt(1 + "u"^2), "y" = log (1 + "u"^2)`
Solve the following.
If x = `"a"(1 - 1/"t"), "y" = "a"(1 + 1/"t")`, then show that `"dy"/"dx" = - 1`
If x = `(4t)/(1 + t^2), y = 3((1 - t^2)/(1 + t^2))` then show that `dy/dx = (-9x)/(4y)`.
Find `"dy"/"dx"` if x = 5t2, y = 10t.
If x sin(a + y) + sin a cos(a + y) = 0 then show that `("d"y)/("d"x) = (sin^2("a" + y))/(sin"a")`
If x = `"a"("t" - 1/"t")`, y = `"a"("t" + 1/"t")`, where t be the parameter, then `("d"y)/("d"x)` = ?
Find `("d"y)/("d"x)`, if x = em, y = `"e"^(sqrt("m"))`
Solution: Given, x = em and y = `"e"^(sqrt("m"))`
Now, y = `"e"^(sqrt("m"))`
Diff.w.r.to m,
`("d"y)/"dm" = "e"^(sqrt("m"))("d"square)/"dm"`
∴ `("d"y)/"dm" = "e"^(sqrt("m"))*1/(2sqrt("m"))` .....(i)
Now, x = em
Diff.w.r.to m,
`("d"x)/"dm" = square` .....(ii)
Now, `("d"y)/("d"x) = (("d"y)/("d"m))/square`
∴ `("d"y)/("d"x) = (("e"sqrt("m"))/square)/("e"^"m")`
∴ `("d"y)/("d"x) = ("e"^(sqrt("m")))/(2sqrt("m")*"e"^("m")`
If x = `sqrt(1 + u^2)`, y = `log(1 + u^2)`, then find `(dy)/(dx).`
Find `dy/dx` if, x = e3t, y = `e^((4t + 5))`
Find `dy/dx` if, x = e3t, y = `e^((4t+5))`
Find `dy/dx` if, x = `e^(3t)`, y = `e^(4t+5)`
If x = f(t) and y = g(t) are differentiable functions of t, so that y is function of x and `(dx)/dt ≠ 0` then prove that `dy/(dx) = (dy/dt)/((dx)/dt)`. Hence find `dy/(dx)`, if x = at2, y = 2at.
Find `dy/dx if, x = e^(3t),y=e^((4t+5))`
Find `dy/dx` if,
`x = e ^(3^t), y = e^((4t + 5))`
Find `dy/dx` if, `x=e^(3t), y=e^((4t+5))`
Find `dy/dx` if x= `e^(3t)`, y =`e^((4t+5))`
Find `dy/dx` if, x = `e^(3t)`, y = `e^((4t + 5))`.